Reduction to the pole in Fourier domain – good and bad filtering of real data in Brazil

2019 ◽  
Author(s):  
Felipe Melo ◽  
Valéria Barbosa
1996 ◽  
Vol 13 (3) ◽  
pp. 207-211 ◽  
Author(s):  
Daya M. Rawson ◽  
Jeremy Bailey ◽  
Paul J. Francis

AbstractThe use of artificial neural networks (ANNs) as a classifier of digital spectra is investigated. Using both simulated and real data, it is shown that neural networks can be trained to discriminate between the spectra of different classes of active galactic nucleus (AGN) with realistic sample sizes and signal-to-noise ratios. By working in the Fourier domain, neural nets can classify objects without knowledge of their redshifts.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. L67-L73 ◽  
Author(s):  
Fernando Guspí ◽  
Iván Novara

We have developed an equivalent-source method for performing reduction to the pole and related transforms from magnetic data measured on unevenly spaced stations at different elevations. The equivalent source is composed of points located vertically beneath the measurement stations, and their magnetic properties are chosen in such a way that the reduced-to-the-pole magnetic field generated by them is represented by an inverse-distance Newtonian potential. This function, which attenuates slowly with distance, provides better coverage for discrete data points. The magnetization intensity is determined iteratively until the observed field is fitted within a certain tolerance related to the level of noise; thus, advantages in computer time are gained over the resolution of large systems of equations. In the case of induced magnetization, the iteration converges well for verticalor horizontal inclinations, and results are stable if noise is taken into account properly. However, for a range of intermediate inclinations near 35°, a factor tending to zero makes it necessary to perform the reduction through a two-stage procedure, using an auxiliary magnetization direction, without significantly affecting the speed and stability of the method. The performance of the procedure was tested on a synthetic example based on a field generated on randomly scattered stations by a random set of magnetic dipoles, contaminated with noise, which is reduced to the pole for three different magnetization directions. Results provide a good approximation to the theoretical reduced-to-the-pole field using a one- or a two-stage reduction, showing minor noise artifacts when the direction is nearly horizontal. In a geophysical example with real data, the reduction to the pole was used to correct the estimated magnetization direction that originates an isolated anomaly over Sierra de San Luis, Argentina.


Geophysics ◽  
1992 ◽  
Vol 57 (6) ◽  
pp. 823-840 ◽  
Author(s):  
Guillaume Cambois ◽  
Paul L. Stoffa

In the surface‐consistent hypothesis, a seismic trace is the convolution of a source operator, a receiver operator, a reflectivity operator (representing the subsurface structure) and an offset‐related operator. In the log/Fourier domain, convolutions become sums and the log of signal amplitude at a given frequency is the sum of source, receiver, structural, and offset‐related terms. Recovering the amplitude of the reflectivity for a given frequency is then a linear problem (very similar to a surface‐consistent static correction problem). However, this linear system is underconstrained. Thus, among the infinite number of possible solutions, a particular one must be selected. Studies with real data support the choice of a spatially band‐limited solution. The surface‐consistent operators can then be calculated very efficiently using an inverse Hessian method. Applications to real seismic data show improvement compared with previous techniques. Surface‐consistent deconvolution is robust and fast in the log/Fourier domain. It allows the use of long operators, improves statics estimation, and removes the amplitude variations due to source or receiver coupling.


Author(s):  
W. Baumeister ◽  
R. Rachel ◽  
R. Guckenberger ◽  
R. Hegerl

IntroductionCorrelation averaging (CAV) is meanwhile an established technique in image processing of two-dimensional crystals /1,2/. The basic idea is to detect the real positions of unit cells in a crystalline array by means of correlation functions and to average them by real space superposition of the aligned motifs. The signal-to-noise ratio improves in proportion to the number of motifs included in the average. Unlike filtering in the Fourier domain, CAV corrects for lateral displacements of the unit cells; thus it avoids the loss of resolution entailed by these distortions in the conventional approach. Here we report on some variants of the method, aimed at retrieving a maximum of information from images with very low signal-to-noise ratios (low dose microscopy of unstained or lightly stained specimens) while keeping the procedure economical.


2019 ◽  
Vol 35 (1) ◽  
pp. 126-136 ◽  
Author(s):  
Tour Liu ◽  
Tian Lan ◽  
Tao Xin

Abstract. Random response is a very common aberrant response behavior in personality tests and may negatively affect the reliability, validity, or other analytical aspects of psychological assessment. Typically, researchers use a single person-fit index to identify random responses. This study recommends a three-step person-fit analysis procedure. Unlike the typical single person-fit methods, the three-step procedure identifies both global misfit and local misfit individuals using different person-fit indices. This procedure was able to identify more local misfit individuals than single-index method, and a graphical method was used to visualize those particular items in which random response behaviors appear. This method may be useful to researchers in that it will provide them with more information about response behaviors, allowing better evaluation of scale administration and development of more plausible explanations. Real data were used in this study instead of simulation data. In order to create real random responses, an experimental test administration was designed. Four different random response samples were produced using this experimental system.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (10) ◽  
pp. 607-618
Author(s):  
JÉSSICA MOREIRA ◽  
BRUNO LACERDA DE OLIVEIRA CAMPOS ◽  
ESLY FERREIRA DA COSTA JUNIOR ◽  
ANDRÉA OLIVEIRA SOUZA DA COSTA

The multiple effect evaporator (MEE) is an energy intensive step in the kraft pulping process. The exergetic analysis can be useful for locating irreversibilities in the process and pointing out which equipment is less efficient, and it could also be the object of optimization studies. In the present work, each evaporator of a real kraft system has been individually described using mass balance and thermodynamics principles (the first and the second laws). Real data from a kraft MEE were collected from a Brazilian plant and were used for the estimation of heat transfer coefficients in a nonlinear optimization problem, as well as for the validation of the model. An exergetic analysis was made for each effect individually, which resulted in effects 1A and 1B being the least efficient, and therefore having the greatest potential for improvement. A sensibility analysis was also performed, showing that steam temperature and liquor input flow rate are sensible parameters.


Author(s):  
Olga Mikhaylovna Tikhonova ◽  
Alexander Fedorovich Rezchikov ◽  
Vladimir Andreevich Ivashchenko ◽  
Vadim Alekseevich Kushnikov

The paper presents the system of predicting the indicators of accreditation of technical universities based on J. Forrester mechanism of system dynamics. According to analysis of cause-and-effect relationships between selected variables of the system (indicators of accreditation of the university) there was built the oriented graph. The complex of mathematical models developed to control the quality of training engineers in Russian higher educational institutions is based on this graph. The article presents an algorithm for constructing a model using one of the simulated variables as an example. The model is a system of non-linear differential equations, the modelling characteristics of the educational process being determined according to the solution of this system. The proposed algorithm for calculating these indicators is based on the system dynamics model and the regression model. The mathematical model is constructed on the basis of the model of system dynamics, which is further tested for compliance with real data using the regression model. The regression model is built on the available statistical data accumulated during the period of the university's work. The proposed approach is aimed at solving complex problems of managing the educational process in universities. The structure of the proposed model repeats the structure of cause-effect relationships in the system, and also provides the person responsible for managing quality control with the ability to quickly and adequately assess the performance of the system.


2019 ◽  
Vol 12 (3) ◽  
pp. 37-47
Author(s):  
I. Ya. Lukasevich

The implementation of the May presidential decree aimed at Russia’s joining the top five global economies and achieving economic growth rates above the world’s average while maintaining macroeconomic stability requires a highly developed and efficient stock market ensuring the accumulation of capital and its deployment in the most promising and productive sectors of the economy.The subject of the research is timing anomalies in the Russian stock market in 2012–2018. The relevance of the research is due to the information inefficiency of the Russian stock market and its imperfections leading to significant price deviations from the «fair» value of assets and depriving investors of the opportunity to form various strategies for deriving additional revenues not related to fundamental economic factors and objective processes occurring in the global and local economies and the economy of an individual business entity. Based on the trend analysis of the Broad Market USD Index (RUBMI), the paper demonstrates a methodology for simulating the analysis of price anomalies on large arrays of real data using statistical data processing methods and modern information technologies. The paper concludes that though the Russian stock market lacks even the weak form of efficiency, such well-known timing anomalies as the “day-of-the-week” effect and the “month” effect have not been observed in the recent years. Therefore, investors could not use these anomalies to derive regular revenues above the market average.


Sign in / Sign up

Export Citation Format

Share Document