scholarly journals Prognozowanie zmian korytotwórczych w uregulowanym korycie rzeki Czarny Dunajec z wykorzystaniem modelu jednowymiarowego

2017 ◽  
Vol 26 (3) ◽  
pp. 346-360
Author(s):  
Karol Plesiński ◽  
Paweł Michalik ◽  
Artur Radecki-Pawlik

Along the paper, we presented an analysis of changes of cross-sections morphology within the regulated reach of a mountain river. The river engineering works there were done by building cable block ramp. The studied reach was located in the Czarny Dunajec river. Analyzed reach of the river consisted of 100-m long segment upstream of the existing block ramp and 65 m downstream of it. The analysis was done based on field measurements, numerical modeling with HEC-RAS and Hjulström’s graph. Numerical modeling was conducted for observed flood Qfl ood = 16.9 m3·s–1 on 5 August 2013, and for the t-years floods: Q50% = 59 m3·s–1, Q25% = 99 m3·s–1, Q10% = 165 m3·s–1 and Q1% = 321 m3·s–1. For the analyzed reach an attempt was done to determinate dominant discharge.

2020 ◽  
Vol 19 (3) ◽  
pp. 43-58
Author(s):  
Karol Plesiński ◽  
◽  
Artur Radecki-Pawlik ◽  
Nadzieja Jurkowska ◽  
◽  
...  

Aim of the study: The aim of this study is to analyze the hydrodynamic parameters in the area of one of the block ramp in the analyzed stream. Material and methods: The field research included geodetic measurements on the basis of which the longitudinal profile and cross-sections of the watercourse bed and structures were made. Numerical modelling of flood flows was also performed in the HEC-RAS program, from which hydrodynamic data were obtained. The data obtained from field measurements and numerical modelling were used to calculate the length of the energy dissipation basins of the structure and to determine the type of water movement using the Froude number. The calculations were performed for several variants. The real lengths of the energy dissipation basin were compared with the lengths of hydraulic jumps that are formed on them. Results and conclusions: The obtained results indicate that the length of the energy dissipation basin is too short because the hydraulic jumps go beyond them. As a result, a scour is formed below the structure, which in the event of further development may threaten the stability of the structure.


2010 ◽  
Vol 41 (2) ◽  
pp. 92-103 ◽  
Author(s):  
Peggy Zinke ◽  
Nils Reidar Bøe Olsen ◽  
Jim Bogen ◽  
Nils Rüther

A 3D numerical model was used to compute the discharge distribution in the channel branches of Lake Øyeren's delta in Norway. The model solved the Navier–Stokes equations with the k–ɛ turbulence model on a 3D unstructured grid. The bathymetry dataset for the modelling had to be combined from different data sources. The results for three different flow situations in 1996 and 1997 showed a relative accuracy of the computed discharges within the range of 0 to±20% compared with field measurements taken by an ADCP at 13 cross sections of the distributary channels. The factors introducing the most error in the computed results are believed to be uncertainties concerning the bathymetry. A comparison between the computational results of the older morphology data from 1985–1990 and the model morphology from 1995–2004 indicated that morphological changes in this period had already had consequences for the flow distribution in some channels. Other important error sources were the inevitable use of averaged water level gradients because of unavailable water level measurements within the delta.


Author(s):  
Abbas Torabizadeh ◽  
Hamid-Reza Ghafouri ◽  
Mohamadreza Majdzadehtabatabai ◽  
Ahmad Tahershamsi

The bed of the step-pool rivers is adapted to the flow conditions in terms of the topographic position and the steep slope of the path in such a way to dissipate the water energy, along the river. The beds of these rivers is sinusoidal like the meander rivers. However, as the river banks are mostly rocky in mountainous areas and the erosion in these areas is less, the bed fluctuation of these reaches is mainly vertical. When the water flow streams from the step crest into the pool, most of the water energy dissipates. In addition to the height difference, other factors contribute to the energy dissipation in the step pool reaches. The present study examines the energy dissipation by determining its effective factors, including step height (H), step length (L), hydraulic radius (R), sediment material diameter (d84), velocity in the step (V), etc. by field measurements in three reaches of mountain rivers. In the same vein, an equation is provided to estimate energy dissipation in the step pool reaches, by considering measurable effective parameters.


2018 ◽  
Author(s):  
Honghai Li ◽  
Tahirih Lackey ◽  
Tanya Beck ◽  
Hans Moritz ◽  
Katharine Groth ◽  
...  

2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Piotr Fabijańczyk ◽  
Jarosław Zawadzki ◽  
Małgorzata Wojtkowska

AbstractThe article presents detailed geostatistical analysis of spatial distribution of lead and zinc concentration in water, suspension and bottom sediments of large, urban lake exposed to intensive anthropogenic pressure within a large city. Systematic chemical measurements were performed at eleven cross-sections located along Czerniakowskie Lake, the largest lake in Warsaw, the capital of Poland. During the summer, the lake is used as a public bathing area, therefore, to better evaluate human impacts, field measurements were carried out in high-use seasons. It was found that the spatial distributions of aqueous lead and zinc differ during the summer and autumn. In summer several Pb and Zn hot-spots were observed, while during autumn spatial distributions of Pb and Zn were rather homogenous throughout the entire lake. Large seasonal differences in spatial distributions of Pb and Zn were found in bottom sediments. Autumn concentrations of both heavy metals were ten times higher in comparison with summer values.Clear cross-correlations of Pb and Zn concentrations in water, suspension and bottom sediments suggest that both Pb and Zn came to Czerniakowskie Lake from the same source.


2018 ◽  
Vol 10 (12) ◽  
pp. 1869 ◽  
Author(s):  
Nicolás Corti Meneses ◽  
Florian Brunner ◽  
Simon Baier ◽  
Juergen Geist ◽  
Thomas Schneider

Quantification of reed coverage and vegetation status is fundamental for monitoring and developing lake conservation strategies. The applicability of Unmanned Aerial Vehicles (UAV) three-dimensional data (point clouds) for status evaluation was investigated. This study focused on mapping extent, density, and vegetation status of aquatic reed beds. Point clouds were calculated with Structure from Motion (SfM) algorithms in aerial imagery recorded with Rotary Wing (RW) and Fixed Wing (FW) UAV. Extent was quantified by measuring the surface between frontline and shoreline. Density classification was based on point geometry (height and height variance) in point clouds. Spectral information per point was used for calculating a vegetation index and was used as indicator for vegetation vitality. Status was achieved by combining data on density, vitality, and frontline shape outputs. Field observations in areas of interest (AOI) and optical imagery were used for reference and validation purposes. A root mean square error (RMSE) of 1.58 m to 3.62 m for cross sections from field measurements and classification was achieved for extent map. The overall accuracy (OA) acquired for density classification was 88.6% (Kappa = 0.8). The OA for status classification of 83.3% (Kappa = 0.7) was reached by comparison with field measurements complemented by secondary Red, Green, Blue (RGB) data visual assessments. The research shows that complex transitional zones (water–vegetation–land) can be assessed and support the suitability of the applied method providing new strategies for monitoring aquatic reed bed using low-cost UAV imagery.


Author(s):  
S. Neelamani ◽  
Bassam N. Shuhaibar ◽  
Khaled Al-Salem ◽  
Yousef Al-Osairi ◽  
Qusaie E. Karam ◽  
...  

Abstract Maintaining and retaining a quality sandy beach is a primary requirement for attracting people and tourists in any coastal country. Tourism Enterprises Company (TEC) in Kuwait owns 230 m long sandy beach in Ras Al-Ardh Sea Club, Salmiya, Kuwait. The beach has been eroding because of strong hydrodynamics forces from waves and currents. TEC wants to develop a stable sandy beach of 30 m wide. Kuwait Institute for Scientific Research (KISR), Kuwait is assigned to carry out the required scientific studies. In order to make sure a stable quality beach will exist, KISR has carried out the needed studies, which involves the field measurements such as bbathymetry survey, current and tidal variations, physical characteristics of beach soil, beach and sea bed profile, establishing the design parameters such as waves, currents, tide and wind. Hydrodynamic model study using DELFT3D model for the present and for the proposed extended groin conditions with beach nourishment were carried out. Also numerical modeling using GENESIS model to understand the future shore line changes due to the proposed development was carried out. Design of Groins to estimate the weight of armor units and weight of inner layers were carried out. The particle size and quantity of sand needed for reclamation of 30 m wide beach was estimated. Based on the study, it is recommended that the sandy soil to be used for 30 m wide beach nourishment should have D50 greater than 0.42 mm (say 0.5 mm) and D10 greater than 0.25 mm. The borrow pit much be selected by keeping this soil characters in mind. It is recommended to use a submerged offshore breakwater in order to retain the beach sand in place and for reducing the maintenance nourishment. Otherwise, large quantity of the capital nourished beach sand will escape into the deeper water due to strong current coupled with waves and steep seabed slopes. Environmental Impact Study was carried out as per Kuwait Environment Public Authority requirements to bring out the impacts due to beach filling and the construction submerged offshore barrier and extension of east groin for a distance of 30 m. TEC will implement the recommendations for developing the beach in Ras Al-Ardh sea club and will be useful to attract more people to use this beach.


2020 ◽  
Vol 8 (6) ◽  
pp. 411
Author(s):  
Zhaoqing Yang ◽  
Taiping Wang ◽  
Ziyu Xiao ◽  
Levi Kilcher ◽  
Kevin Haas ◽  
...  

Numerical models have been widely used for the resource characterization and assessment of tidal instream energy. The accurate assessment of tidal stream energy resources at a feasibility or project-design scale requires detailed hydrodynamic model simulations or high-quality field measurements. This study applied a three-dimensional finite-volume community ocean model (FVCOM) to simulate the tidal hydrodynamics in the Passamaquoddy–Cobscook Bay archipelago, with a focus on the Western Passage, to assist tidal energy resource assessment. IEC Technical specifications were considered in the model configurations and simulations. The model was calibrated and validated with field measurements. Energy fluxes and power densities along selected cross sections were calculated to evaluate the feasibility of the tidal energy development at several hotspots that feature strong currents. When taking both the high current speed and water depth into account, the model results showed that the Western Passage has great potential for the deployment of tidal energy farms. The maximum extractable power in the Western Passage was estimated using the Garrett and Cummins method. Different criteria and methods recommended by the IEC for resource characterization were evaluated and discussed using a sensitivity analysis of energy extraction for a hypothetical tidal turbine farm in the Western Passage.


2020 ◽  
Vol 8 (4) ◽  
pp. 284 ◽  
Author(s):  
Ayyuob Mahmoodi ◽  
Mir Ahmad Lashteh Neshaei ◽  
Abbas Mansouri ◽  
Mahmood Shafai Bejestan

The Nowshahr port in the southern coastlines of the Caspian Sea is among the oldest northern ports of Iran, first commissioned in the year 1939. In recent years, this port has been faced with severe sedimentation issues in and around its entrance that has had negative impacts on the operability of the port. The present study aims at identifying major reasons for severe sedimentation in the port entrance. First, field measurements were evaluated to gain an in-depth view of the hydrodynamics of the study area. Numerical models then were calibrated and validated against existing field measurements. Results of numerical modeling indicated that wind-induced current is dominant in the Caspian Sea. The numerical results also indicated that in the case of an eastward current direction, the interaction between current and the western breakwater arm would lead to the formation of a separation zone and a recirculation zone to the east of the port entrance region. This eddying circulation could transport suspend settled sediments from eastern shoreline towards the port entrance and its access channel. The results of this paper are mostly based on the study of current patterns around the port in the storm conditions incorporate with the identification of sediment sources.


Sign in / Sign up

Export Citation Format

Share Document