scholarly journals Azadirachtin-induced effects on various life history traits and cellular immune reactions of Galleria mellonella (Lepidoptera: Pyralidae)

2017 ◽  
Vol 69 (2) ◽  
pp. 335-344 ◽  
Author(s):  
Aylin Er ◽  
Deniz Taşkıran ◽  
Olga Sak

The effects of the botanical insecticide azadirachtin were examined on the life history traits, fecundity and immune parameters of Galleria mellonella L. (Lepidoptera: Pyralidae). We determined that for the topical application of azadirachtin, the LC50 was 16.564 ppm; at 100 ppm the adult emergence time was prolonged, however the longevity of adults remained unchanged above sublethal concentrations. The mean number of healthy eggs and the fecundity of adults decreased, whereas the number of defective eggs increased with azadirachtin treatment. At concentrations >50 ppm female G. mellonella adults laid no eggs. Azadirachtin reduced total hemocyte counts at 24 and 48 h posttreatment, however the alterations in differential hemocyte counts were only significant at 100 ppm. Laminarin-induced nodulation response and the spreading ability of hemocytes were also suppressed with azadirachtin treatment. Our results suggest that azadirachtin, as a good candidate for integrated pest control, has the capability to affect the biological parameters and cellular immunity of the model insect G. mellonella.

Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 103 ◽  
Author(s):  
Chuandong Yi ◽  
Pumo Cai ◽  
Jia Lin ◽  
Xuxiang Liu ◽  
Guofu Ao ◽  
...  

This study aims to evaluate several life-history traits of a T. drosophilae population from southern China and its parasitic preference of three Drosophila species. For mated T. drosophilae females, the mean oviposition and parasitization period were 27.20 and 37.80 d, respectively. The daily mean parasitization rate was 59.24% per female and the lifetime number of emerged progeny was 134.30 per female. Trichopria drosophilae females survived 37.90 and 71.61 d under host-provided and host-deprived conditions, respectively. To assess the potential for unmated reproduction in T. drosophilae, the mean oviposition and parasitization period of unmated females was 22.90 and 47.70 d, respectively. They had a daily mean parasitization rate of 64.68%, produced a total of 114.80 offspring over their lifetime, and survived 52 d. Moreover, T. drosophilae showed a preference towards D. suzukii based on the total number of emerged offspring under a choice test. Our findings indicate that T. drosophilae from southern China appears to be suitable for the control of D. suzukii in invaded areas, due to its reproductive potential.


1987 ◽  
Vol 22 (3) ◽  
pp. 237-244 ◽  
Author(s):  
W. Davis Martin ◽  
G. A. Herzog

The life history of the tobacco flea beetle, Epitrix hirtipennis (Melsheimer) (= Epitrix parvula Fab.) was studied under the controlled conditions of 27 ± 2.8°C, 80 ± 6% and a 14L:10D photophase. Eggs matured in ca. 4 days, the larval stage, including 3 instars, developed in 13 days, prepupal development took 3 days and the pupal stage lasted approximately 5 days. There was a 24 day interval between oviposition and adult emergence. Females laid 3.1 eggs/day with a 13 day period between adult emergence and first oviposition. The mean number of total eggs/female was 138.6 ± 14.7. Female oviposition continued until a few days before death and adult longevity was approximately 70 days. A visual means of distinguishing between male and female beetles was also developed.


2019 ◽  
Vol 112 (6) ◽  
pp. 505-510 ◽  
Author(s):  
Brittny M Jones ◽  
Jeffery K Tomberlin

Abstract The black soldier fly, Hermetia illucens (L.), is economically important due to its use in waste management and as an alternative protein source for livestock, poultry, and aquaculture. While industry promotes mass production of the black soldier fly, little is known about the impact of larval competition on development time, resulting immature and adult weight, or adult longevity. The goal of this research was to examine the life-history traits of black soldier flies when reared at four densities (500, 1,000, 1,500, and 2,000 larvae/4-liter container) provided 54-g Gainesville diet at 70% moisture (feed rates of 0.027, 0.036, 0.054, and 0.108 g) every other day. Results were as expected with the lowest larval density (500) producing heavier individuals (by 26%) than the greatest larval density (2,000) across all life stages. In addition to weights, larvae reared at the lowest density developed 63% faster than those reared at the greatest density. In regard to pupal development time, those reared at the lowest larval density developed 3% slower than the greatest density. A 21% difference between the two extreme densities was found in survivorship to prepupal stage, with the lowest larval density having the greatest survivorship (92%) compared with the greatest larval density (70%). All densities displayed over 90% adult emergence rates. Such information is vital for optimization of the process of converting waste products to protein at an industrial scale with the black soldier fly.


Author(s):  
Roberto Guidetti ◽  
Elisa Gneuß ◽  
Michele Cesari ◽  
Tiziana Altiero ◽  
Ralph O Schill

Abstract Comparative analyses of life-history theory studies are based on the characteristics of the life cycles of different species. For tardigrades, life-history traits are available only from laboratory cultures, most of which have involved parthenogenetic species. The discovery of a new gonochoristic bisexual Mesobiotus species in a moss collected on the island of Elba (Italy) provides us with the opportunity to describe Mesobiotus joenssoni sp. nov. and to collect data on the life-history traits of cultured specimens to increase our knowledge of the life-history strategies present in tardigrades. This new species is differentiated from all other species of the genus by the presence of granules (~1 µm in diameter) on the dorsal cuticle of the last two body segments, two large bulges (gibbosities) on the hindlegs and long, conical egg processes. The species exhibits sexual dimorphism in body length, with females being longer than males of the same age. The mean lifespan of specimens was 86 days, with a maximum of 150 days. The mean age at first oviposition was 19.8 days and the mean egg hatching time 15.4 days. The life-cycle traits correspond to those collected for the only other two macrobiotid species with gonochoric amphimictic reproduction examined so far.


2013 ◽  
Vol 34 (6) ◽  
pp. 1650
Author(s):  
E. Farcy ◽  
H. Roche ◽  
J.C. Aymes ◽  
E. Beall ◽  
M. Charrier ◽  
...  

Author(s):  
Mauri Hickin ◽  
Hannah Nadel ◽  
Coby Schal ◽  
Allen C Cohen

Abstract Diet optimization is an important process to increase the efficiency of rearing insects and can be used to develop high-quality insects with specific fitness and life-history traits. Galleria mellonella (L.), the greater wax moth, is widely used in research, microbiology assays, as pet food, and host for biological control agents. Although artificial diets for G. mellonella have been researched and optimized for decades, preliminary tests indicated that the predominantly utilized G. mellonella diet could be improved to yield larger larvae with a short development time. We used a design of experiments (DOE) approach that incorporated multiple full factorial designs and a final mixture design to test the qualitative and quantitative effects of ingredients and their interactions on larval mass and survival. Analysis of 17 ingredient variations in 35 diet formulations yielded an optimized diet that supported high survival and 2.4-fold greater larval body mass than the standard rearing diet. This study demonstrates the importance and efficiency of statistical DOE in guiding the optimization of insect diets to improve traits that represent the quality and fitness of the reared insects.


Author(s):  
D. Adly ◽  
W. M. Marzouk

AbstractThe greater wax moth, Galleria mellonella Linnaeus (Lepidoptera: Pyralidae), is considered one of the most important pests effecting honeybee industry. The present study was carried out to evaluate the efficacy of the larval parasitoid, Bracon hebetor Say. (Hymenoptera: Braconidae), on G. mellonella in laboratory, honeybee colonies, and stored wax combs. In the laboratory studies, the pre-ovipositoinal, ovipositional, and post-ovipositional periods of the parasitoid were 0.27 ± 0.45, 20.87 ± 1.5, and 4.33 ± 0.48 days, respectively. The total number of eggs/female of the parasitoid on the 5th larval instar of G. mellonella reached 71.77 ± 7.84 eggs. B. hebetor females paralyze their hosts, the percentage of paralyzed 2nd larval instar of G. mellonella was 30% and parasitoid could not lay eggs on them, while the percentage of paralyzed 5th larval instar was 100% and parasitoid could lay eggs. In the field studies, the parasitoid, B. hebetor was released in honeybee colonies and stored wax combs to evaluate its efficacy. By releasing the parasitoid, the mean numbers of dead larvae of G. mellonella in treated honeybee colonies were greater than in the untreated, (91.8 ± 5.319 and 53.3 ± 24.373) larvae/colony, respectively. Also, releasing of B. hebetor against G. mellonella in stored wax combs reduced the number of survived G. mellonella larvae in treated storage wax combs to 3.2 ± 2.38 than in the untreated (using formic acid) 9.3 ± 5.52 larvae/store colonies. This is the first work to study efficacy of the parasitoid, B. hebetor on G. mellonella larvae in honeybee colonies and stored wax combs. The results suggested that the parasitoid had the efficacy to be used for controlling G. mellonella in beehives and stored wax comb in Egypt.


2022 ◽  
Author(s):  
Pierre Marie Sovegnon ◽  
Marie Joelle Fanou ◽  
Romaric Akoton ◽  
Oswald Yédjinnavênan Djihinto ◽  
Hamirath Odée Lagnika ◽  
...  

The success achieved in reducing malaria transmission by vector control is threatened by insecticide resistance. To strengthen the current vector control programmes, the non-genetic factors underlying the emergence of insecticide resistance in Anopheles vectors and its widespread need to be explored. This study aimed to assess the effects of larval diet on some life-history traits and pyrethroid-insecticide susceptibility of Anopheles gambiae s.s. Three (3) An. gambiae strains, namely Kisumu (insecticide susceptible), AcerKis (homozygous ace-1 R G119S resistant) and KisKdr (homozygous kdr R L1014F resistant) were fed with three different diets (low, medium, and high) of TetraMin ® Baby fish food. Pre-imaginal developmental time, larval mortality, adult emergence rate and female wing length were measured. Mosquito females were exposed to insecticide-treated net (ITN) PermaNet 2.0 and PermaNet 3.0. In the three An. gambiae strains, significant differences in adult emergence rates ( F = 1054.2; df = 2; p <0.01), mosquito wing length ( F = 970.5; df = 2; p <0.01) and adult survival post insecticide exposure ( χ2 = 173; df = 2; p <0.01), were noticed among the three larval diets. Larvae fed with the low food diets took more time to develop, were smaller at emergence and displayed a short lifespan, while the specimens fed with a high regime developed faster and into big adults. Although being fed with a high diet, none of An. gambiae strain harbouring the kdr R and ace-1 R allele survived 24 hours after exposure against PermaNet 3.0. This study showed that variation in the larval diet significantly impacts An. gambiae life-history traits such as larval mortality and developmental time, adult wing length, and female susceptibility to pyrethroid insecticides. Further investigations through field-based studies would allow an in-depth understanding of the implications of these non-genetic parameters on the physiological traits of malaria vectors and consequently improve resistance management.


2020 ◽  
Author(s):  
Adandé A. Medjigbodo ◽  
Luc Salako Djogbénou ◽  
Oswald Y. Djihinto ◽  
Romaric B. Akoton ◽  
Emmanuella Abbey ◽  
...  

Abstract BackgroundExisting mechanisms of insecticide resistance have been known to help the survival of mosquitoes following contact with chemical compounds, even though they could negatively affect the life-history traits of resistant malaria vectors. In West Africa, the knock-down resistance mechanism, kdrR (L1014F) is the most common. However, little knowledge is available on its effects on mosquito life traits. We investigated the fitness effects associated with this knock-down resistance allele in Anopheles gambiae sensu stricto (s.s.).MethodsTwo laboratory reference strains of An. gambiae s.s., Kisumu (susceptible) and KisKdr (kdr resistant) were used. Female mosquitoes were fed and allowed to lay eggs. Fecundity and fertility were assessed by examining the number of eggs per mosquito and larval hatching rates. Larval survivorship and pupation rates were also measured. Female mosquitoes of both strains were fed through membrane feeding assays, then the blood feeding success, blood volume and adult survivorship were monitored. ResultsAn. gambiae carrying kdrR allele (KisKdr) showed a lower ability to lay eggs. The mean number of larvae in the susceptible strain Kisumu was overall threefold higher than that seen in KisKdr strain with significant difference in the hatching rates (81.89% in Kisumu versus 72.89% in KisKdr, p= 0.003). KisKdr larvae had a significant higher larval survivorship than Kisumu. The blood feeding success was significantly higher (p= 2.2.10-16) in the resistant mosquitoes (84%) than that in the susceptible ones (34.75%). However, the mean blood volume was 1.36 µL/mg, 1.45 µL/mg and 1.68 µL/mg in Kisumu, homozygote and heterozygote KisKdr respectively. After blood feeding, the heterozygote KisKdr displayed highest survivorship when compared to that of Kisumu.ConclusionsOur findings provide novel insights on fitness effects of the kdrR (L1014F) allele in An. gambiae. The presence of this resistance allele tends to have an impact on mosquito life-history traits such as fecundity, fertility, larval survivorship and blood feeding behaviour. These data could help to guide the implementation of more reliable strategies for the control of malaria vectors.


2003 ◽  
Vol 24 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Mariano Sironi ◽  
Margarita Chiaraviglio ◽  
Sergio Lucino ◽  
Miguel Bertona

AbstractWe provide data on intrapopulation variation of life history traits of Boa constrictor occidentalis in the District of Pocho, Córdoba, Argentina. A total of 153 individuals were captured. The distribution of individuals among four size classes differed significantly among the five years of study. The proportion of mature individuals did not differ between sexes but it showed variation among years. Females were longer and heavier than males. The mean litter size of the species was 24 and there was a linear relationship between litter size and maternal snout-vent length. Most boas were captured during the dry season. There were no significant sex differences in the time of capture and air temperature in either the wet or the dry seasons. However, we found significant differences in the time of capture and air temperature between the seasons. The long-term monitoring of wild populations should be a priority for the development of conservation and management plans for this boid.


Sign in / Sign up

Export Citation Format

Share Document