scholarly journals Microtitrimetric determination of a drug content of pharmaceuticals containing olanzapine in non-aqueous medium

2009 ◽  
Vol 15 (2) ◽  
pp. 77-81 ◽  
Author(s):  
Kanakapura Basavaiah ◽  
Nagaraju Rajendraprasad ◽  
Basavaiah Vinay

Two simple, rapid, reliable and cost-effective methods based on titrimetry in non-aqueous medium are described for the determination of olanzapine in pharmaceuticals. In these methods, the drug dissolved in the glacial acetic acid was titrated with the acetous perchloric acid with visual and potentiometric end point detection, crystal violet being used as the indicator for visual titration. The methods are applicable over 1-15 mg range of olanzapine. The procedures were applied to determine olanzapine in pharmaceutical products and the results were found to be in a good agreement with those obtained by the reference method. Associated pharmaceutical materials did not interfere. The precision results, expressed by inter-day and intra-day relative standard deviation values, were satisfactory, higher than 2%. The accuracy was satisfactory as well. The methods proved to be suitable for the analysis of olanzapine in bulk drug and in tablets. The accuracy and reliability of the methods were further ascertained by recovery studies via a standard addition technique with percent recoveries in the range 97.51-103.7% with a standard deviation of less than 2%.

1970 ◽  
Vol 7 (5) ◽  
pp. 25-29
Author(s):  
Kaushik S Agrawal ◽  
Lokesh R Gandhi ◽  
Nitin S. Bhajipale S Bhajipale3

A novel, safe and sensitive method of Spectrophotometric estimation in UV - region has been developed for the assay of Fimasartan in its tablet formulation. The present study was undertaken to develop and validate a simple, accurate, precise, reproducible and cost effective UV spectrophotometric method for the estimation of Fimasartan bulk and pharmaceutical formulation. The method have been developed and validated for the assay of Fimasartan using Methanol as diluent. Absorption maximum (λmax) of the drug was found to be 240nm. The quantitative determination of the drug was carried out at 240nm. The method was shown linear in the mentioned concentrations having correlation coefficient R2 of 0.999. The recovery values for Fimasartan ranged from 98.74% to 99.23%.The Percent Relative Standard Deviation of interday and intraday was 0.85% and 0.75% respectively. All the parameters of the analysis were chosen according to the International Conference on Harmonisation guideline and validated statistically using Relative Standard Deviation and Percent Relative Standard Deviation. Hence, proposed method was precise, accurate and cost effective. This method could be applicable for quantitative determination of the bulk drug as well as dosage formulation.   KEY WORDS: 


2010 ◽  
Vol 16 (2) ◽  
pp. 127-132
Author(s):  
Nagaraju Rajendraprasad ◽  
Kanakapura Basavaiah ◽  
Basavaiah Vinay

Two simple titrimetric methods have been developed for the determination of hydroxyzine dihydrochloride (HDH) in pure form and in tablets. The principle of the methods are simple acid-base reactions in which the hydrochloride content of the drug was determined by titrating with an aqueous standardized NaOH solution either visually using phenolphthalein as indicator (method A) or potentiometrically (method B) using glass-calomel electrode system. The methods were applicable over the range of 2-20 mg HDH. The procedures were also applied for the determination of HDH in its dosage forms and the results were found in good agreement with those obtained by the reference method. The precision, expressed by intra-day and inter-day relative standard deviation values, was satisfactory (RSD ? 2.76%). The accuracy was satisfactory as well RE ? 2.67%. Excipients used as additives in pharmaceutical formulations did not interfere in the proposed procedures as shown by the recovery study via standard addition technique with recovery percentage in the range 97.48 - 106.3% with a standard deviation of 1.76-3.42%.


2007 ◽  
Vol 4 (2) ◽  
pp. 173-179 ◽  
Author(s):  
K. Basavaiah ◽  
U. R. Anil Kumar

A simple spectrophotometric method is proposed for the determination of zidovudine(ZDV) in bulk drug and in pharmaceutical preparations. The method is based on the oxidation of ZDV by a known excess of oxidant N-bromosuccinimide (NBS), in buffer medium of pH 1.5, followed by the estimation of unreacted amount of oxidant with metol and sulphanilic acid. The reacted oxidant corresponds to the amount ZDV. The purple-red reaction product absorbs maximally at 530 nm and Beer’s law is obeyed over a range 5 to 75 μg mL-1. The apparent molar absorptivity is calculated to be 5.1×103L mol-1cm-1, and the corresponding Sandell sensitivity value is 0.052 μg cm-2. The limit of detection and quantification are found to be 0.90 and 2.72, respectively. Intra-day and inter-day precision and accuracy of the developed methods were evaluated as per the current ICH guidelines. The method was successfully applied to the assay of ZDV in tablet/capsule preparations and the results were statistically compared with those of the reference method by applying the Student’s t-test and F-test. No interference was observed from the common tablet/capsule excipients. The accuracy of the method was further ascertained by performing recovery studies via standard-addition method.


2018 ◽  
Vol 33 (2) ◽  
pp. 21
Author(s):  
Kanakapura Basavaiah ◽  
Okram Zenita Devi

Two sensitive spectrophotometric methods are described for the determination of simvastatin (SMT) in bulk drug and in tablets. The methods are based on the oxidation of SMT by a measured excess of cerium (IV) in acid medium followed by determination of unreacted oxidant by two different reaction schemes. In one procedure (method A), the residual cerium (IV) is reacted with a fixed concentration of ferroin and the increase in absorbance is measured at 510 nm. The second approach (method B) involves thereduction of the unreacted cerium (IV) with a fixed quantity of iron (II), and the resulting iron (III) is complexed with thiocyanate and the absorbance measured at 470 nm. In both methods, the amount of cerium (IV) reacted corresponds to SMT concentration. The experimental conditions for both methods were optimized. In method A, the absorbance is found to increase linearly with SMT concentration (r = 0.9995) whereas in method B, the same decreased (r = -0.9943). The systems obey Beer’s law for 0.6-7.5 and 0.5-5.0 μg mL-1 for method A and method B, respectively. The calculated molar absorptivity values are 2.7 X 104 and 1.06 X 105 Lmol-1 cm-1, respectively; and the corresponding sandel sensitivity values are 0.0153 and 0.0039μg cm-2, respectively. The limit of detection (LOD) and quantification (LOQ) are reported for both methods. Intra-day and inter-day precision, and accuracy of the methods were established as per the current ICH guidelines. The methods were successfully applied to the determination of SMT in tablets and the results were statistically compared with those of the reference method by applying the Student’s t-test and F-test. No interference was observed from the common excipients added to tablets. The accuracy and validity of the methods were further ascertained by performing recovery experiments via standard addition procedure.


Chemosensors ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 113
Author(s):  
Ancuta Dinu ◽  
Constantin Apetrei

This paper describes the sensitive properties of screen-printed carbon electrodes (SPCE) modified by using three different electroactive chemical compounds: Meldola’s Blue, Cobalt Phthalocyanine and Prussian Blue, respectively. It was demonstrated that the Prussian Blue (PB) modified SPCE presented electrochemical signals with the highest performances in terms of electrochemical process kinetics and sensitivity in all the solutions analyzed. PB-SPCE was demonstrated to detect Phe through the influence it exerts on the redox processes of PB. The PB-SPCE calibration have shown a linearity range of 0.33–14.5 µM, a detection limit (LOD) of 1.23 × 10−8 M and the standard deviation relative to 3%. The PB-SPCE sensor was used to determine Phe by means of calibration and standard addition techniques on pure samples, on simple pharmaceutical samples or on multicomponent pharmaceutical samples. Direct determination of the concentration of 4 × 10−6–5 × 10−5 M Phe in KCl solution showed that the analytical recovery falls in the range of 99.75–100.28%, and relative standard deviations in the range of 2.28–3.02%. The sensors were successfully applied to determine the Phe in pharmaceuticals. The validation of the method was performed by using the FTIR, and by comparing the results obtained by PB-SPCE in the analysis of three pharmaceutical products of different concentrations with those indicated by the producer.


2014 ◽  
Vol 1033-1034 ◽  
pp. 521-525
Author(s):  
Cheng Ying Zhou ◽  
Wei Qu ◽  
Liu Lu Cai

This paper determined the total absorbance of phosphorus molybdenum blue and arsenic molybdenum blue by using the additive property of their absorbance values. By eliminating the interference of arsenic by reduction masking with composite reducing agent Na2SO3-Na2S2O3-KBr, the absorbance of phosphorus could be obtained. Thus, the content of phosphorus and arsenic could be calculated, respectively. The results show that the work curves of this method for phosphorus and arsenic are consistent with Beer’s law when the content of phosphorus and arsenic is 0-0.60ug/mL and 0-2.00ug/mL, respectively. The standard addition recovery rate of phosphorus and arsenic is 98.80%-101.04% and 99.00%-101.50%, respectively. The relative standard deviation of phosphorus and arsenic is less than 4.0% with good accuracy and precision. This method is simple and fast to determine phosphorus and arsenic in molybdenum concentrate, and the results are accurate and reliable.


2011 ◽  
Vol 47 (2) ◽  
pp. 251-260 ◽  
Author(s):  
Kanakapura Basavaiah Vinay ◽  
Hosakere Doddarevanna Revanasiddappa ◽  
Okram Zenita Devi ◽  
Pavagada Jagannathamurthy Ramesh ◽  
Kanakapura Basavaiah

One titrimetric and two spectrophotometric methods have been described for the determination of ofloxacin (OFX) in bulk drug and in tablets, employing N-Bromosuccinimide as an analytical reagent. The proposed methods involve the addition of a known excess of NBS to OFX in acid medium, followed by determination of unreacted NBS. In titrimetry, the unreacted NBS is determined iodometrically, and in spectrophotometry, unreacted NBS is determined by reacting with a fixed amount of either indigo carmine (Method A) or metanil yellow (Method B). In all the methods, the amount of NBS reacted corresponds to the amount of OFX. Titrimetry allows the determination of 1-8 mg of OFX and the calculations are based on a 1:5 (OFX:NBS) reaction stoichiometry. In spectrophotometry, Beer's law is obeyed in the concentration ranges 0.5-5.0 µg/mL for method A and 0.3-3.0 µg/mL for method B. The molar absorptivities are calculated to be 5.53x10(4) and 9.24x10(4) L/mol/cm for method A and method B, respectively. The methods developed were applied to the assay of OFX in tablets, and results compared statistically with those of a reference method. The accuracy and reliability of the methods were further ascertained by performing recovery tests via the standard-addition method.


1988 ◽  
Vol 71 (1) ◽  
pp. 36-37
Author(s):  
Ramesh J Trivedi

Abstract A simple, sensitive, and rapid liquid chromatographic method for quantitating α-ionone in toothpaste at levels of 20 ppm in the presence of large amounts of flavor has been developed. The method is accurate, precise, cost-effective, and specific for α-ionone. Average recovery of a laboratory-prepared sample was 99.0% with the relative standard deviation was 1.29% (n = 6).


2007 ◽  
Vol 57 (2) ◽  
pp. 211-220 ◽  
Author(s):  
Kanakapura Basavaiah ◽  
Veeraiah Ramakrishna ◽  
Urdigere Kumar

Use of ceric ammonium sulphate and two dyes, methyl orange and indigo carmine, in the determination of lansoprazole in pharmaceuticalsTwo spectrophotometric methods are proposed for the assay of lansoprazole (LPZ) in bulk drug and in dosage forms using ceric ammonium sulphate (CAS) and two dyes, methyl orange and indigo carmine, as reagents. The methods involve addition of a known excess of CAS to LPZ in acid medium, followed by determination of residual CAS by reacting with a fixed amount of either methyl orange, measuring the absorbance at 520 nm (method A), or indigo carmine, measuring the absorbance at 610 nm (method B). In both methods, the amount of CAS reacted corresponds to the amount of LPZ and the measured absorbance was found to increase linearly with the concentration of LPZ, which is corroborated by the correlation coefficients of 0.9979 and 0.9954 for methods A and B, respectively. The systems obey Beer's law for 0.5-7.0 μg mL-1and 0.25-3.0 μg mL-1for methods A and B, respectively. The apparent molar absorptivities were calculated to be 3.0 x 104and 4.4 x 104L mol-1cm-1for methods A and B, respectively. The limits of detection (LOD) and quantification (LOQ) were calculated to be 0.08 and 0.25 μg mL-1for method A, and 0.09 and 0.27 μg mLs-1for method B, respectively. The intra-day and inter-day precision and accuracy of the methods were evaluated according to the current ICH guidelines. Both methods were of comparable accuracy (er≤ 2 %). Also, both methods are equally precise as shown by the relative standard deviation values < 1.5%. No interference was observed from common pharmaceutical adjuvants. The accuracy of the methods was further ascertained by performing recovery studies using the standard addition method. The methods were successfully applied to the assay of LPZ in capsule preparations and the results were statistically compared with those of the literature UV-spectrophotometric method by applying Student'st-test andF-test.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Mazhar Abdulwahed ◽  
Lamia Mamoly ◽  
Wael Bosnali

A new simple and reliable spectrophotometric method is described to determine glyoxylic acid in its synthesis reaction mixture containing oxalic acid, glycolic acid, acetic acid, glyoxal, and ethylene glycol by means of a modified Hopkins–Cole reaction between glyoxylic acid and tryptophan in presence of ferric chloride and concentrated sulphuric acid. The linear range of glyoxylic acid concentration is 0–0.028 M. The limits of detection (LOD) and quantitation (LOQ) are 0.0019 M and 0.00577 M, respectively. The LOD, LOQ, standard deviation, relative standard deviation, and recovery ratio of the proposed method are comparable with a selected HPLC reference method. Both methods displayed same precision and credibility. Reaction stoichiometry between tryptophan and glyoxylic acid is assumed to be 2 : 3. Reaction mechanism has been postulated based on identified molar ratios of reactants. Glyoxal gave a negative test with tryptophan although it is a dialdehyde.


Sign in / Sign up

Export Citation Format

Share Document