scholarly journals Adsorption of methylene blue onto activated carbon prepared from Lupinus Albus

2016 ◽  
Vol 22 (2) ◽  
pp. 155-165 ◽  
Author(s):  
Safiye Bağcı ◽  
Ayhan Ceyhan

The adsorption of methylene blue (MB) from synthetic aqueous solutions in batch experiments using Lupinus Albus-activated carbon (LAAC) by chemical activation with zinc chloride was investigated. Prior to adsorption experiments, surface/physical properties of LAAC were determined using Scanning Electron Microscopy, Fourier transform infrared Spectroscopy and nitrogen adsorption isotherm. In the adsorption experiments, effects of adsorption time, solution pH, MB concentration and amount of LAAC were investigated. The isotherm and kinetic parameters were used to describe the experimental data. The BET surface area was 1254 m2/g while its total pore volume was found to be 0.484 cm3/g. Maximum adsorption capacity occurred at solution pH value 10 and was recorded as 109.89 mg/g. Adsorption data were modeled using Langmuir, Freundlich and Temkin adsorption isotherms. Langmuir isotherm and pseudo-second-order models fit to the process and reaction kinetics correspondingly.

Author(s):  
Kalpana Patidar ◽  
Manish Vashishtha

Present work is focused on the preparation of mustard stalk activated carbon (MSAC) using chemical activation with H3PO4 and exploring its properties for its use in dye removal from wastewater. Adsorption variable (dosage, contact time, and solution pH), pore structure, morphology, surface functional groups, equilibrium kinetics, and isotherm study for removal of methylene blue (MB) using MSAC were investigated. The present study showed that an adsorption dosage of 0.2 g L-1 and pH 8 can be considered as optimum for the MB removal. SEM result showed that pore of MSAC was larger than the pore of the mustard stalk (MS). BET surface area and total pore volume of MSAC were found as 510 m2 g-1 and 0.33 cm3 g-1, respectively. Equilibrium adsorption data were examined by Langmuir and Freundlich isotherm models. Better correspondence to the Langmuir model with a maximum adsorption capacity of 212.76 mg g-1 (MB onto MSAC) was obtained. Dimensionless factor, RL revealed favourable nature of the sorption in the MSAC - MB system. Adsorption rates were found to conform to the pseudo-second-order kinetics with good correlation. These results show that the MSAC could be used as a renewable and economical alternative to commercial AC in the removal of MB dye from wastewater.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
N. Mojoudi ◽  
N. Mirghaffari ◽  
M. Soleimani ◽  
H. Shariatmadari ◽  
C. Belver ◽  
...  

AbstractThe purpose of this study was the preparation, characterization and application of high-performance activated carbons (ACs) derived from oily sludge through chemical activation by KOH. The produced ACs were characterized using iodine number, N2 adsorption-desorption, Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The activated carbon prepared under optimum conditions showed a predominantly microporous structure with a BET surface area of 2263 m2 g−1, a total pore volume of 1.37 cm3 g−1 and a micro pore volume of 1.004 cm3 g−1. The kinetics and equilibrium adsorption data of phenol fitted well to the pseudo second order model (R2 = 0.99) and Freundlich isotherm (R2 = 0.99), respectively. The maximum adsorption capacity based on the Langmuir model (434 mg g−1) with a relatively fast adsorption rate (equilibrium time of 30 min) was achieved under an optimum pH value of 6.0. Thermodynamic parameters were negative and showed that adsorption of phenol onto the activated carbon was feasible, spontaneous and exothermic. Desorption of phenol from the adsorbent using 0.1 M NaOH was about 87.8% in the first adsorption/desorption cycle and did not decrease significantly after three cycles. Overall, the synthesized activated carbon from oily sludge could be a promising adsorbent for the removal of phenol from polluted water.


2013 ◽  
Vol 832 ◽  
pp. 132-137 ◽  
Author(s):  
Azry Borhan ◽  
Mohd Faisal Taha ◽  
Athirah Amer Hamzah

The preparation of activated carbon from wood-based industrys residue is one of the most environmental friendly solutions of transforming negative-valued wastes to valuable materials. Wood sawdust was first chemically activated using potassium hydroxide, KOH and characterized by nitrogen adsorption-desorption isotherms measured in Micrometrices ASAP 2020 and Field Emission Scanning Electron Microscope (FESEM). By manipulating three different parameters, the optimal activation conditions were found at temperature of 500°C, activation time of 60 min and impregnation ratio of 1:3. Results showed that the BET surface area, total pore volume and diameter of activated carbon were 1876.16 m2g-1, 0.88 cm3g-1and 6.93 nm, respectively. Nitrogen adsorption desorption isotherm analysis proved the existence of mesopores in activated carbon produced, suggesting that it can be effectively used as an adsorption material.


2017 ◽  
Vol 11 (12) ◽  
pp. 102 ◽  
Author(s):  
Muhammad Saleem ◽  
Mehmood Ali ◽  
Zia Siddiqi ◽  
Abdulrahman Saud Al Qahtani

Saudi Arabian desert tree Acacia (Vachellia Seyal) used to produce Activated Carbon (AC) by phosphoric acid mediated chemical activation at low temperature. Characterization of AC done based on proximate and detailed analysis including Moisture content, Total Ash content, pH value, Iodine number, Methylene blue number, pore volume and BET surface area. Results revealed that properties of produced activated carbon (PAC) are comparable to commercial activated carbon (CAC). Low ash content and hardness making it suitable for water and wastewater treatment. Cost of production found to be less than $0.5/kg. Both AC used to treat wastewater containing Methylene Blue (MB) dye. Initially the removal efficiency of CAC is higher than the PAC however, both AC reached to similar removal (95.3% for PAC and 98.2% for CAC) within one hour. Growing demand of AC in the country can be meet by producing low cost locally available waste materials Acacia seyal tree branches.


Author(s):  
Mustafa Kaya ◽  
Ömer Şahin ◽  
Cafer Saka

AbstractIn this study, low cost activated carbon was prepared from the pistachio shell by chemical activation with zinc chloride (ZnCl2). The prepared activated carbon was characterized by thermogravimetry (TG) and differential thermal gravimetry (DTG), infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) surface area analyses. Results showed that the activation temperature and impregnation ratio have significant effect on the iodine number of the prepared activated carbon. The optimum conditions for preparing the activated carbon having the highest surface area were found to be an activation temperature of 700 °C, soaking time of 24 h and ZnCl2/ pistachio shell ratio of 50 %. The results showed that the BET surface area, total pore volume, iodine number and methylene blue (MB) number of activated carbon prepared under the optimum conditions were 1108 m2/g, 0.39 cm3/g, 1051 mg/g, 98.48 mg/g, respectively.


2008 ◽  
Vol 5 (4) ◽  
pp. 742-753 ◽  
Author(s):  
M. Sujatha ◽  
A. Geetha ◽  
P. Sivakumar ◽  
P. N. Palanisamy

An Experimental and theoretical study has been conducted on the adsorption of methylene blue dye using activated carbon prepared from babul seed by chemical activation with orthophosphoric acid. BET surface area of the activated carbon was determined as 1060 m2/g. Adsorption kinetics, equilibrium and thermodynamics were investigated as a function of initial dye concentration, temperature and pH. First order Lagergren, pseudo-second order and Elovich kinetic models were used to test the adsorption kinetics. Results were analyzed by the Langmuir, Freundlich and Temkin isotherm models. Based on regression coefficient, the equilibrium data found fitted well to the Langmuir equilibrium model than other models. The characteristics of the prepared activated carbon were found comparable to the commercial activated carbon. It is found that the babul seed activated carbon is very effective for the removal of colouring matter.


2016 ◽  
Vol 74 (12) ◽  
pp. 2751-2761 ◽  
Author(s):  
Yan Shu ◽  
Kelin Li ◽  
Jinfeng Song ◽  
Bing Li ◽  
Chunfang Tang

In this study, Salix matsudana activated carbon (SAC) was prepared by phosphoric acid activation, and the adsorption characteristics of Cd(II) and Pb(II) on SAC in single- and double-component solutions were investigated. In both systems, the adsorption capacities of both ions on SAC increased with the increasing initial pH value and temperature in the solutions, and the adsorption equilibrium was approached at 10 min. The adsorption process was spontaneous, endothermic, and depicted well by the pseudo-second-order adsorption model, and the equilibrium adsorption fitted reasonably well with the Langmuir isotherm. The maximum adsorption capacity (Qm) of Cd(II) and Pb(II) was 58.48 and 59.01 mg/g, respectively, in the single-element systems. However, it reduced to 25.32 and 31.09 mg/g, respectively, in the double-element system. The physicochemical property analysis showed that the specific surface area, total pore volume, and average pore diameter of SAC was 435.65 m2/g, 35.68 mL/g, and 3.86 nm, respectively. The SAC contained groups of -OH, C = O, and P = O. Results suggest that SAC had a good performance for the adsorption of Cd(II) and Pb(II) from solution, and the adsorption selectivity sequence was Pb(II) > Cd(II).


2020 ◽  
Vol 42 (4) ◽  
pp. 550-550
Author(s):  
Houria Rezala Houria Rezala ◽  
Houda Douba Houda Douba ◽  
Horiya Boukhatem and Amaya Romero Horiya Boukhatem and Amaya Romero

A purified raw montmorillonite and hydroxy-aluminum pillared montmorillonite have been prepared from a natural bentonite from Maghnia, Algeria. These materials have been analyzed by X-ray fluorescence spectroscopy, X-ray diffraction, Infrared spectroscopy and nitrogen adsorption-desorption measurement. The pillared montmorillonite provided a certain increase of interlayer basal spacing and BET surface area and consequently the improvement of its capacities adsorption and decolorization of Methylene Blue. The adsorption properties of these materials were studied as a function of contact time, solution pH, initial Methylene Blue concentration and temperature. The adsorption kinetics and isotherms were well fitted by pseudo-second order and Freundlich models, respectively. In addition to that, thermodynamic studies showed an exothermic and a spontaneous process.


2011 ◽  
Vol 704-705 ◽  
pp. 517-522 ◽  
Author(s):  
Xiao Juan Jin ◽  
Zhi Ming Yu ◽  
Gao Jiang Yan ◽  
Wu Yu

Activated carbons were prepared through chemical activation of lignin from straw pulping precursor using potassium carbonate as the chemical agent. Effects of activated temperature, K2CO3/lignin ratio and the activated time on the yield, Iodine number of activated carbon were investigated. Experimental results indicated that the optimum conditions were as follow: activated temperature 800°C, K3CO3(40% concentration) /lignin ratio 5: l, activated time 50min. These conditions allowed us to obtain a BET surface area of 1104 m2/g, including the external or non-microporous surface of 417 m2/g,Amount of methylene blue adsorption, Iodine number and the yield of activated carbon prepared under optimum conditions were 10.6mL/0.lg,1310 mg/g and 19.75%, respectively.


2019 ◽  
Vol 21 (4) ◽  
pp. 89-97 ◽  
Author(s):  
Yuqi Wang ◽  
Yanhui Li ◽  
Heng Zheng

Abstract New kind of adsorbent was produced from Trichosanthes kirilowii Maxim shell. The KOH activation technology for preparation of Trichosanthes kirilowii Maxim shell activated carbon (TKMCK) was optimized. Using methylene blue as the sample adsorbate, the adsorption behavior was systematically investigated in terms of the activation agent and temperature, the adsorption temperature and time, the initial adsorbate pH and concentration, as well as the dosage of adsorbent. Surface physical morphology of the TKMCK prepared was observed by scanning electron microscopy (SEM), while the functional groups were determined with Fourier transform infrared (FTIR) spectra. Kinetic studies indicated that the adsorption process was more consistent with the pseudo-second-order kinetic. Both Langmuir and Freundlich isotherms were employed to fit the adsorption data at equilibrium, with the former giving a maximum adsorption capacity of 793.65 mg/g at 323 K. BET surface area of as-prepared TKMCK was 657.78 m2/g.


Sign in / Sign up

Export Citation Format

Share Document