scholarly journals Activated carbon from mustard stalk biomass: Synthesis, characterization and application in wastewater treatment

Author(s):  
Kalpana Patidar ◽  
Manish Vashishtha

Present work is focused on the preparation of mustard stalk activated carbon (MSAC) using chemical activation with H3PO4 and exploring its properties for its use in dye removal from wastewater. Adsorption variable (dosage, contact time, and solution pH), pore structure, morphology, surface functional groups, equilibrium kinetics, and isotherm study for removal of methylene blue (MB) using MSAC were investigated. The present study showed that an adsorption dosage of 0.2 g L-1 and pH 8 can be considered as optimum for the MB removal. SEM result showed that pore of MSAC was larger than the pore of the mustard stalk (MS). BET surface area and total pore volume of MSAC were found as 510 m2 g-1 and 0.33 cm3 g-1, respectively. Equilibrium adsorption data were examined by Langmuir and Freundlich isotherm models. Better correspondence to the Langmuir model with a maximum adsorption capacity of 212.76 mg g-1 (MB onto MSAC) was obtained. Dimensionless factor, RL revealed favourable nature of the sorption in the MSAC - MB system. Adsorption rates were found to conform to the pseudo-second-order kinetics with good correlation. These results show that the MSAC could be used as a renewable and economical alternative to commercial AC in the removal of MB dye from wastewater.

2016 ◽  
Vol 22 (2) ◽  
pp. 155-165 ◽  
Author(s):  
Safiye Bağcı ◽  
Ayhan Ceyhan

The adsorption of methylene blue (MB) from synthetic aqueous solutions in batch experiments using Lupinus Albus-activated carbon (LAAC) by chemical activation with zinc chloride was investigated. Prior to adsorption experiments, surface/physical properties of LAAC were determined using Scanning Electron Microscopy, Fourier transform infrared Spectroscopy and nitrogen adsorption isotherm. In the adsorption experiments, effects of adsorption time, solution pH, MB concentration and amount of LAAC were investigated. The isotherm and kinetic parameters were used to describe the experimental data. The BET surface area was 1254 m2/g while its total pore volume was found to be 0.484 cm3/g. Maximum adsorption capacity occurred at solution pH value 10 and was recorded as 109.89 mg/g. Adsorption data were modeled using Langmuir, Freundlich and Temkin adsorption isotherms. Langmuir isotherm and pseudo-second-order models fit to the process and reaction kinetics correspondingly.


2017 ◽  
Vol 76 (7) ◽  
pp. 1697-1705 ◽  
Author(s):  
Tiecheng Guo ◽  
Sicong Yao ◽  
Hengli Chen ◽  
Xin Yu ◽  
Meicheng Wang ◽  
...  

Sewage sludge-based activated carbon is proved to be an efficient and low-cost adsorbent in treatment of various industrial wastewaters. The produced carbon had a well-developed pore structure and relatively low Brunauer–Emmett–Teller (BET) surface area. Adsorptive capacity of typical pollutants, i.e. copper Cu(II) and methylene blue (MB) on the carbon was studied. Adsorptions were affected by the initial solution pH, contact time and adsorbent dose. Results showed that adsorption of Cu(II) and MB on the produced carbon could reach equilibrium after 240 min. The average removal rate for Cu(II) on the carbon was high, up to 97% in weak acidic conditions (pH = 4–6) and around 98% for MB in a very wide pH range (pH = 2–12). The adsorption kinetics were well fitted by the pseudo-second order model, and both Langmuir and Freundlich isotherm models could well describe the adsorption process at room temperature. The theoretical maximum adsorption capacities of Cu(II) and MB on sewage sludge-based activated carbon were 114.94 mg/g and 125 mg/g, respectively. Compared with commercial carbon, the sewage sludge-based carbon was more suitable for heavy metal ions’ removal than dyes’.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
N. Mojoudi ◽  
N. Mirghaffari ◽  
M. Soleimani ◽  
H. Shariatmadari ◽  
C. Belver ◽  
...  

AbstractThe purpose of this study was the preparation, characterization and application of high-performance activated carbons (ACs) derived from oily sludge through chemical activation by KOH. The produced ACs were characterized using iodine number, N2 adsorption-desorption, Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The activated carbon prepared under optimum conditions showed a predominantly microporous structure with a BET surface area of 2263 m2 g−1, a total pore volume of 1.37 cm3 g−1 and a micro pore volume of 1.004 cm3 g−1. The kinetics and equilibrium adsorption data of phenol fitted well to the pseudo second order model (R2 = 0.99) and Freundlich isotherm (R2 = 0.99), respectively. The maximum adsorption capacity based on the Langmuir model (434 mg g−1) with a relatively fast adsorption rate (equilibrium time of 30 min) was achieved under an optimum pH value of 6.0. Thermodynamic parameters were negative and showed that adsorption of phenol onto the activated carbon was feasible, spontaneous and exothermic. Desorption of phenol from the adsorbent using 0.1 M NaOH was about 87.8% in the first adsorption/desorption cycle and did not decrease significantly after three cycles. Overall, the synthesized activated carbon from oily sludge could be a promising adsorbent for the removal of phenol from polluted water.


2008 ◽  
Vol 5 (4) ◽  
pp. 742-753 ◽  
Author(s):  
M. Sujatha ◽  
A. Geetha ◽  
P. Sivakumar ◽  
P. N. Palanisamy

An Experimental and theoretical study has been conducted on the adsorption of methylene blue dye using activated carbon prepared from babul seed by chemical activation with orthophosphoric acid. BET surface area of the activated carbon was determined as 1060 m2/g. Adsorption kinetics, equilibrium and thermodynamics were investigated as a function of initial dye concentration, temperature and pH. First order Lagergren, pseudo-second order and Elovich kinetic models were used to test the adsorption kinetics. Results were analyzed by the Langmuir, Freundlich and Temkin isotherm models. Based on regression coefficient, the equilibrium data found fitted well to the Langmuir equilibrium model than other models. The characteristics of the prepared activated carbon were found comparable to the commercial activated carbon. It is found that the babul seed activated carbon is very effective for the removal of colouring matter.


1997 ◽  
Vol 35 (7) ◽  
pp. 205-211 ◽  
Author(s):  
R. Leyva-Ramos ◽  
J. R. Rangel-Mendez ◽  
J. Mendoza-Barron ◽  
L. Fuentes-Rubio ◽  
R. M. Guerrero-Coronado

The adsorption isotherm of cadmium on activated carbon was measured in a batch adsorber. Effects of temperature and solution pH on the adsorption isotherm were investigated by determining the adsorption isotherm at temperatures of 10, 25, and 40°C and at initial pH values from 2 to 8. Langmuir isotherm better fitted the experimental data since the average percent deviation was lower than with the Freundlich isotherm It was noticed that the amount of Cd2+ adsorbed was reduced about 3 times by increasing the temperature from 10 to 40°C. It was found that Cd2+ was not adsorbed on activated carbon at pH of 2 or lower and that Cd2+ was precipitated out as Cd(OH)2 at pH values above 9. Maximum adsorption capacity was observed at pH of 8 and the adsorption capacity was decreased about 12 times by reducing the initial pH from 8 to 3. According to the cadmium speciation diagram the predominant species below pH of 8 is Cd2+. Thus, cadmium was adsorbed on the activated carbon surface as Cd2+. It was concluded that the adsorption capacity is a strong function of pH and temperature.


Author(s):  
Mehdi Esmaeili Bidhendi ◽  
Zahra Poursorkh ◽  
Hassan Sereshti ◽  
Hamid Rashidi Nodeh ◽  
Shahabaldin Rezania ◽  
...  

Nano-sized activated carbon was prepared from pomegranate peel (PG-AC) via NaOH chemical activation and was fully characterized using BET, FT-IR, FE-SEM, EDX, and XRD. The newly synthesized PG-AC was used for cefixime removal from the aqueous phase. The effective parameters on the adsorption process, including solution pH (2–11), salt effect (0–10%), adsorbent dosage (5–50 mg), contact time (5–300 min), and temperature (25–55 °C) were examined. The experimental adsorption equilibrium was in close agreement with the type IV isotherm model set by the International Union of Pure and Applied Chemistry (IUPAC). The adsorption process was evaluated with isotherm, kinetic, and thermodynamic models and it is were well fitted to the Freundlich isotherm (R2 = 0.992) and pseudo-second-order model (R2 = 0.999). The Langmuir isotherm provided a maximum adsorption capacity of 181.81 mg g−1 for cefixime uptake onto PG-AC after 60 min at pH 4. Hence, the isotherm, kinetic and thermodynamic models were indicated for the multilayer sorption followed by the exothermic physical adsorption mechanism.


2015 ◽  
Vol 73 (2) ◽  
pp. 423-436 ◽  
Author(s):  
Çisem Kırbıyık ◽  
Ayşe Eren Pütün ◽  
Ersan Pütün

In this study, Fe(III) and Cr(III) metal ion adsorption processes were carried out with three adsorbents in batch experiments and their adsorption performance was compared. These adsorbents were sesame stalk without pretreatment, bio-char derived from thermal decomposition of biomass, and activated carbon which was obtained from chemical activation of biomass. Scanning electron microscopy and Fourier transform–infrared techniques were used for characterization of adsorbents. The optimum conditions for the adsorption process were obtained by observing the influences of solution pH, adsorbent dosage, initial solution concentration, contact time and temperature. The optimum adsorption efficiencies were determined at pH 2.8 and pH 4.0 for Fe(III) and Cr(III) metal ion solutions, respectively. The experimental data were modelled by different isotherm models and the equilibriums were well described by the Langmuir adsorption isotherm model. The pseudo-first-order, pseudo-second-order kinetic, intra-particle diffusion and Elovich models were applied to analyze the kinetic data and to evaluate rate constants. The pseudo-second-order kinetic model gave a better fit than the others. The thermodynamic parameters, such as Gibbs free energy change ΔG°, standard enthalpy change ΔH° and standard entropy change ΔS° were evaluated. The thermodynamic study showed the adsorption was a spontaneous endothermic process.


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 508 ◽  
Author(s):  
Svetlana Yefremova ◽  
Alma Terlikbayeva ◽  
Abdurassul Zharmenov ◽  
Askhat Kablanbekov ◽  
Lara Bunchuk ◽  
...  

Coke-based carbon sorbent (CBCS) was produced using special coke fines with the following characteristics: ash, 4.5%; iodine adsorption capacity, 52%; specific surface area, 600 m2 g−1; and total pore volume, 0.4 cm3 g−1. Gold adsorption from real production cyanide solutions in batch and column laboratory experiments was studied. The optimum adsorbent/solution ratio was 0.2 g/20 cm3. Sorption equilibrium occurred after 60 min of phase-time contact. The CBCS maximum adsorption capacity for gold was found to be 1.2 mg g−1. Both the Langmiur and Freundlich isotherm models confirmed that gold adsorption by CBCS proceeds favorably, but the Freundlich isotherm best describes the adsorption equilibrium. The CBCS dynamic exchange capacity (100 g t−1) and full dynamic exchange capacity (4600 g t−1) for gold were determined in column tests. It was revealed using SEM that adsorbate was retained in sorbent pores. The possibility of completely eluting gold from CBCS was demonstrated. A CBCS pilot test to recover gold from 200 dm3 of the cyanide solution containing (mg dm−3) 2.6 Au, 0.42 Ag, and 490 Cu was carried out. The total amount of noble metals (Au + Ag) adsorbed was 99.99% and gold ions was 94%. The CBCS maximum adsorption capacity for gold reached 2900 g t−1.


2013 ◽  
Vol 832 ◽  
pp. 132-137 ◽  
Author(s):  
Azry Borhan ◽  
Mohd Faisal Taha ◽  
Athirah Amer Hamzah

The preparation of activated carbon from wood-based industrys residue is one of the most environmental friendly solutions of transforming negative-valued wastes to valuable materials. Wood sawdust was first chemically activated using potassium hydroxide, KOH and characterized by nitrogen adsorption-desorption isotherms measured in Micrometrices ASAP 2020 and Field Emission Scanning Electron Microscope (FESEM). By manipulating three different parameters, the optimal activation conditions were found at temperature of 500°C, activation time of 60 min and impregnation ratio of 1:3. Results showed that the BET surface area, total pore volume and diameter of activated carbon were 1876.16 m2g-1, 0.88 cm3g-1and 6.93 nm, respectively. Nitrogen adsorption desorption isotherm analysis proved the existence of mesopores in activated carbon produced, suggesting that it can be effectively used as an adsorption material.


2019 ◽  
Author(s):  
Amit Nilabh

In this study we synthesized activated carbon (AC) sourced from peanut shell, an agricultural waste, for the adsorption of methyl blue from its aqueous solution. AC was produced via chemical activation method and was characterized using various tools like XRD, FESEM and Raman spectroscopy. Adsorption experiments were carried in different batches with varying initial concentration, adsorbent dose, contact time, pH and temperature. The optimized parameters for adsorption were found to be that of initial dye concentration of 150 mg/L, adsorbent dose of 120 mg/L, temperature equals to 50C, contact time of 50 minutes and pH equals to 8. Adsorption data were used to figure out isotherm models, kinetics as well as thermodynamics of the process. It was concluded that maximum adsorption capacity is coming to be 714.28 mg/g, and the adsorption is favoring the Tempkin isotherm model. Also it was observed that the process is endothermic and spontaneous in nature.


Sign in / Sign up

Export Citation Format

Share Document