scholarly journals Experimental - theoretical study of axially compressed cold formed steel profiles

2011 ◽  
Vol 9 (3) ◽  
pp. 367-378
Author(s):  
Miroslav Besevic ◽  
Danijel Kukaras

Analysis of axially compressed steel members made of cold formed profiles presented in this paper was conducted through both experimental and numerical methods. Numerical analysis was conducted by means of "PAK" finite element software designed for nonlinear static and dynamic analysis of structures. Results of numerical analysis included ultimate bearing capacity with corresponding middle section force-deflection graphs and buckling curves. Extensive experimental investigation were also concentrated on determination of bearing capacity and buckling curves. Experiments were conducted on five series with six specimens each for slenderness values of 50, 70, 90, 110 and 120. Compressed simply supported members were analyzed on Amsler Spherical pin support with unique electronical equipment and software. Besides determination of forcedeflection curves, strains were measured in 18 or 12 cross sections along the height of the members. Analysis included comparisons with results obtained by different authors in this field recently published in international journals. Special attention was dedicated to experiments conducted on high strength and stainless steel members.

2013 ◽  
Vol 376 ◽  
pp. 231-235
Author(s):  
Cheng Li ◽  
Yun Zou ◽  
Jie Kong ◽  
Zhi Wei Wan

Nonlinear numerical analysis for the force performance of frame middle joint is processed in this paper with the finite element software of ABAQUS. Compared with experimental results, numerical analysis results are found to be reasonable. Then the influence of factors such as shaped steel ratio and axial-load ratio are contrastively analyzed. The results show that shaped steel ratio has a greater influence on the bearing capacity and hysteretic performance of the structure, but the axial-load ratio has less influence.


2014 ◽  
Vol 941-944 ◽  
pp. 1871-1875 ◽  
Author(s):  
Nikolay I. Vatin ◽  
Tatiana Nazmeeva ◽  
Roman Guslinscky

Nowadays cold bent steel thermal сold-bent С-profile is widely used in building construction but we still have some little studied questions in the fields of thermal conductivity, air permeability, resistibility and corrosion behavior of the profile. Cold-bent notched С-profile is used for interior exterior panel members. Lengthwise notches made chequerwise in the profile walls increase the distance of heat flow and decrease heat conductivity and eliminate cold bridges that is why the profile is called “thermal profile”. Cold-bent profile made by cold bending requires alternate approach when engineering structures are designed and maintained. The approach means thin walls’ and the profile special form’ impact on the bearing capacity and stability of the structures should be taken into account. In spite of the wide use of cold-bent notched C-profile in building frameworks, we see lack of information on how the notches influence the bearing capacity and stability of structures. There are no official normative documents on calculation and designing of cold-bent notched profile structures. We carry out theoretical and experimental investigations on global buckling and bearing capacity of steel members of C-shaped notched profiles of different cross-sections area. We carry out theoretical and experimental investigations on heat current passing through the thermal profile structure is held with the use of testing bed.


2014 ◽  
Vol 638-640 ◽  
pp. 101-104
Author(s):  
Yi Liang Peng ◽  
Guo Tian Li ◽  
Xuan Min Han ◽  
Lei Chen

With the rapid development of power transmission and transformation projects in China, steel supporting structure has already became the most popular structural form for these structures. However, the limit of steel grade used for current substation supporting structures is normally Q420, compared with that of Q690 used in other countries. When the high-strength steel is used, the geometric parameters of section for members become smaller, and the stability of members is the most important factors to influence the bearing capacity of structures. The stability factor for axial loaded steel members in current 《Code for design of steel structures》(GB50017-2003) was derived based on the experimental results for steel members with lower steel grade, the results are inevitably different from those for high-strength steel members. To make the calculations of Q690 high-strength steel tubes more accurate and reasonable, this paper conducts experimental study on the bearing capacity of Q690 high-strength steel tubes under axial load to provide scientific basis for practical design of these structures.


2019 ◽  
Vol 29 (4) ◽  
pp. 141-148 ◽  
Author(s):  
Krzysztof Wierzbicki ◽  
Maciej Szumigała

Abstract The article analyses the method of enhancing a steel beam by adding additional steel members like ribs. They are rigidly connected with both flanges in a plane parallel to the web. That plates reduces warping during in-plane bending of steel beam under lateral-torsional bucking. Different thicknesses of steel plates used as ribs and different cross-sections were taken into account. Calculations were conducted using FEM and ABAQUS CAE environment. The outcomes were compared with ones from previous studies which concerned an influence of endplates on load-bearing capacity of an I-beam.


2011 ◽  
Vol 255-260 ◽  
pp. 421-427
Author(s):  
Wen Bo Sun ◽  
Tao Hu ◽  
Wei Huang

Due to its convenience of construction connection and simple appearance, steel tubular structure with simple joints is widely used in spatial structures. Tubular joint generally belongs to semi-rigid joint. Its different internal detail is closely related to the bearing capacity and stiffness of joints and its stiffness characteristic has some definite effects on the internal forces, deformation and bearing capacity of the steel tubular structure. In this paper, the roof structure of the main stadium of 26th Universaide Shenzhen 2011 was selected as the engineering background. This paper also studied the comparison test on different structural forms of spatial circular tubular ZYY-joints of the peaks of its steel structure by scaling down as the proportion of 1:3, and carried out a numerical analysis on these joints by finite element software ANSYS. It shows that, results of numerical analysis coincide with the experimental results and the joint with ribbed stiffener has better bearing capacity and stiffness, which can well meet the engineering needs.


2013 ◽  
Vol 712-715 ◽  
pp. 1054-1057 ◽  
Author(s):  
Siti Fairuz Sapiee ◽  
Hieng Ho Lau

Self-drilling screws are the primary means of fastening for cold-formed steel members in cold-formed thin-gauge steel residential construction because it can drill their own holes and form their own threads. The fabrication of connections is the most labour intensive aspect of the cold-formed thin-gauge steel construction process, thus a better understanding of the behaviour of screw connections could lead to optimum connection design and reducing the cost of the fabrication. The study carried out to investigate the behaviour of single-shear connections using self-drilling screws in the cold-formed steel construction. The focus of this study is on the influence of the number of screws and screw spacing on the strength of self-drilling screw connection. These parameters are varied to determine their influences on the connection strength. The failure load and failure modes were obtained and observed from the tests carried out in the laboratory. Bearing and tilting failures occurred during the testing of these specimens. The predicted connection strengths were calculated using American Iron and Steel Institute (AISI) design equations. A total of 24 specimens of single shear test showed that connection strength is linearly proportional to the number of screw in the connection. Results of the specimen with spacing more than 3d show better correlation with the calculated results as compared to specimens with screw spacing less than 3d.


2014 ◽  
Vol 651-653 ◽  
pp. 1192-1196
Author(s):  
Ji She ◽  
Yun Zou ◽  
Yang Liu ◽  
Zheng Hao Li ◽  
Kai Wen Li

Nonlinear numerical analysis for prefabricated shell wall structure is processed on this paper with the finite element software of ABAQUS. Nonlinear numerical analysis for prefabricated shell wall with vertical joint is processed firstly and numerical analysis results are found to be reasonable when compared with experimental results. Then the influence of factors such as shear strength of joint and axial compression ratio are conparatively analyzed. The results show that shear strength of joint has a greater influence on the bearing capacity and hysteretic performance of the structure and axial compression ratio also has a greater influence on the bearing capacity but less on the hysteretic performance.


Sign in / Sign up

Export Citation Format

Share Document