scholarly journals Influence of the Ribs Parallel to Web on Warping and Load-Bearing Capacity of a Steel I-Beam

2019 ◽  
Vol 29 (4) ◽  
pp. 141-148 ◽  
Author(s):  
Krzysztof Wierzbicki ◽  
Maciej Szumigała

Abstract The article analyses the method of enhancing a steel beam by adding additional steel members like ribs. They are rigidly connected with both flanges in a plane parallel to the web. That plates reduces warping during in-plane bending of steel beam under lateral-torsional bucking. Different thicknesses of steel plates used as ribs and different cross-sections were taken into account. Calculations were conducted using FEM and ABAQUS CAE environment. The outcomes were compared with ones from previous studies which concerned an influence of endplates on load-bearing capacity of an I-beam.

2019 ◽  
Vol 97 ◽  
pp. 04059 ◽  
Author(s):  
Alexey Dem’yanov ◽  
Vladymir Kolchunov ◽  
Igor Iakovenko ◽  
Anastasiya Kozarez

It is presented the formulation and solution of the load bearing capacity of statically indeterminable systems “reinforced concrete beam – deformable base” by spatial cross-sections under force and deformation effects. The solution of problem is currently practically absent in general form. It has been established the relationship between stresses and strains of compressed concrete and tensile reinforcement in the form of diagrams. The properties of the base model connections are described based on a variable rigidity coefficient. It is constructed a system of n equations in the form of the initial parameters method with using the modules of the force (strain) action vector. The equations of state are the dependences that establish the relationship between displacements which are acting on the beam with load. Constants of integration are determined by recurrent formulas. It makes possible to obtain the method of initial parameters in the expanded form and, consequently, the method of displacements for calculating statically indefinable systems. The values of the effort obtained could be used to determine the curvature and rigidity of the sections in this way. It is necessary not to set the vector modulusP, the deformation is set in any section (the module is considered as an unknown) during the problem is solving. This allows us to obtain an unambiguous solution even in the case when the dependence M–χ has a downward section, i.e one value of moment can correspond to two values of curvature.


2009 ◽  
Vol 15 (1) ◽  
pp. 21-33 ◽  
Author(s):  
Artiomas Kuranovas ◽  
Douglas Goode ◽  
Audronis Kazimieras Kvedaras ◽  
Shantong Zhong

This paper represents the analysis of 1303 specimens of CFST experimental data. Test results are compared with EC4 provided method for determining the load‐bearing capacity of these composite elements. Several types of CFSTs were tested: both circular and rectangular cross‐sections with solid and hollow concrete core with axial load applied without and with moment, with sustained load and preloading. For circular cross‐section columns there is a good agreement between the test failure load and the EC4 calculation for both short and long columns with and without moment. For rectangular cross‐section columns the agreement is good except when the concrete cylinder strength was greater than 75 MPa, when many tests failed below the strength predicted by EC4. Preloading the steel tube before filling with concrete seems to have no effect on the strength. This paper also presents the stress distribution, confinement distribution and complete average longitudinal stress‐strain curves for concrete‐filled steel tubular elements. Based on the definition of the “Unified Theory”, the CFST is looked upon as an entity of a new composite material. In this paper, the research achievement of the strength and stability for centrifugal‐hollow and solid concrete filled steel tube are introduced. These behaviours relate to the hollowness ratio and the confining indexes of corresponding solid CFST. If the hollow ratio equals to 0,4–0,5 and over, the N‐ϵ relationship exists in steady descending stage. The critical stress of CFST elements stability is determined as an eccentric member with the initial eccentricity by use of finite element method. Santrauka Straipsnyje analizuojami 1303 betonšerdžių plieninių strypų bandinių eksperimentiniai duomenys. Duomenys lyginami su eurokode 4 pateiktais kompozitinių elementų laikomosios galios nustatymo metodais. Analizuojami šie betonšerdžių plieninių strypų bandinių tipai: pilnaviduriai ir tuščiaviduriai, apskrito ir stačiakampio skerspjūvio kolonos, kurių galuose veikia arba neveikia momentas, su iš anksto pridėta arba ilgalaike apkrova. Apskrito skerspjūvio kolonų laikomosios galios bandymų rezultatai atitinka skaičiavimų reikšmes, apskaičiuotas pagal eurokode 4 pateiktu metodu. Stačiakampio skerspjūvio elementų laikomosios galios reikšmių bandymo rezultatai puikiai atitinka teorines reikšmes, kai betono ritininis stipris nesiekia 75 MPa. Išankstinis elementų apkrovimas poveikio elementų laikomajai galiai beveik neturi. Taip pat nagrinėjami betonšerdžių elementų įtempių būvių pasiskirstymas, betono apspaudimo poveikis ir išilginių deformacijų ir įtempių kreivės. Pateikiama S. T. Zhong „Unifikuota teorija“, kuri nagrinėja kompozitinį elementą kaip visumą. Straipsnyje nagrinėjamos kompozitinio plieninio ir betoninio elemento stiprumo ir pastovumo sąlygos. Tokių elementų reikšmėmis. Jeigu tuštumos santykis lygus 0,4–0,5 ir daugiau, N-ε sąryšis yra kritimo stadijoje. Elgsenos stadijos keičiasi pagal tuštumos koeficientą.


2015 ◽  
Vol 19 (4) ◽  
pp. 99-110 ◽  
Author(s):  
Piotr Szewczyk ◽  
Maciej Szumigała

Abstract This paper presents the numerical modelling of strengthening a steel-concrete composite beam. The main assumption is that the strengthening is not the effect of the state of a failure of a structure, but it resulted from the need to increase the load-bearing capacity and stiffness of the structure (for example: due to a change in the use of the object). The expected solution is strengthening without the necessity to completely unload the structures (to reduce the scope of works, the cost of modernization and to shorten the time). The problem is presented on the example of a composite beam which was strengthened through welding a steel plate to the lower flange of the steel beam. The paper describes how energy parameters are used to evaluate the efficiency of structures’ strengthening and proposes an appropriate solution.


2018 ◽  
Vol 15 (5) ◽  
pp. 760-773 ◽  
Author(s):  
V. A. Utkin ◽  
P. N. Kobzev ◽  
E. G. Shatunova

Introduction. Experience in the design and construction of beam structures of wooden bridges with composite girders indicates the possibility of increasing the bearing capacity and the length of the overlapped spans.Materials and methods. The most rational load-bearing elements of composite girders can serve as the logs edged on two edges with the diameter of 28 to 32 cm with the maximum use of the most durable layers of sapwood and dowel connections of steel plates with blind cylindrical nags.Results. In contrast to the compounds of composite girders on lamellar nails, the proposed connection greatly simplifies the process of making the composite girders. Such connection also allows using the logging along the length, combining into three or four tiers and increasing the length of the span.Discussion and conclusion. The proposed solutions increase the load-bearing capacity of composite girders and allow them to be used in the structures of wooden bridges under modern automotive loads. Moreover, the calculation method of composite girders on the basis of the method of forces and discrete placement in the beams between the logs of concentrated elastic-datum shear bonds is developed.


The focus of this analysis is the review of steel plate strengthened RC beams using Single row and Stagger row bolt arrangements and to compare the bonding behaviour of different bolts arrangement under flexure. Also, to investigate the behaviour, load bearing capacity and the deflection for control and steel plate bonded beams. This research is constrained by FEM analysis utilizing ANSYS to the actions of standard RC Beam and RC beam steel plate associated.


2019 ◽  
Vol 92 ◽  
pp. 13007
Author(s):  
Borana Kullolli ◽  
Pablo Cuéllar ◽  
Matthias Baeßler ◽  
Hans Henning Stutz

The structural performance of many geotechnical systems (e.g. axially-loaded pile foundations), depends on the shearing resistance at the soil interface, which may govern the load bearing capacity of the foundation. Experimental investigations have shown that this interaction is mainly localised within a narrow shear band next to the structure. Under cyclic loading, a contraction of the soil at the interface may arise (net volume loss), possibly leading to a stress relaxation and thus to a reduction of the load bearing capacity (the so-called friction fatigue). Based on the constitutive similarities between soil continua and interfaces, we propose here the adaption of a Generalized Plasticity model for sandy soils for the numerical analysis of interface problems. In this contribution, the results of an experimental campaign for the parameter calibration of the constitutive model are presented. The tests have been conducted with a ring shear device involving different normal stresses, roughness of the steel plates as well as cyclic loading. The new modelling approach shows promising results and has the additional practical advantage that the interface zone and the soil continuum can both be described with the same constitutive model in general boundary value problems.


Author(s):  
Quoc Phong Tran ◽  

The article presents the results of calculation of the load-bearing capacity of connections of LVL structures under tension using cylindrical dowels in trusses and frames. The description of calculation schemes for determining the load-bearing capacity of connections with different location and sizes of steel plates in the connection is given. The influence of steel plate placement on the distribution of forces in the cross-section of samples is investigated. Based on the results of analytical and experimental studies, the load-bearing capacity of dowels during bending is considered, as well as the mechanism of wooden structures` fracture during chipping. A comparative analysis of the effectiveness of different schemes of dowel connections with three steel plates under tension is carried out.


2012 ◽  
Vol 12 (01) ◽  
pp. 153-178 ◽  
Author(s):  
PENG FENG ◽  
SAWULET BEKEY ◽  
YAN-HUA ZHANG ◽  
LIE-PING YE ◽  
YU BAI

Fiber-reinforced polymer (FRP) strengthening technique to improve buckling resistance of steel members is presented in concept and experimental demonstration. The conceptual design of this method is introduced through the preliminary experiments on three specimens. Then, another 14 specimens are tested under axially compressive loading, by which the compressive behavior and the strengthening effects are investigated considering different design parameters and configuration, including the slenderness ratio, the confinement detail, the filled materials and the end connection. The strengthening effects are analyzed by the comparison of both theoretical and test results, which show that the overall buckling failure of steel members can be prevented by FRP strengthening and the ultimate loading capacity and deformation capacity of steel members are enhanced considerably. The maximum load-bearing capacity of strengthened members is 2.86 times of the nonstrengthened ones, and the failure maintains a ductile behavior. In addition, the load-bearing capacity of the members strengthened in this way is compared with the Euler loads of the original steel member and the composite member.


Author(s):  
A. G. Chernykh ◽  
◽  
Quoc Phong Tran ◽  

Currently, wooden structures characterized with high strength, low deformability and good aesthetics are being increasingly used in some areas of construction. Connections with multiple steel plates are very effective for wooden frames and trusses. In order to provide optimal connections, it is necessary to establish the relationship between the connection parameters and the load-bearing capacity of the structure. However, the technical regulations do not provide calculation methods specifically for this type of connection. There have been carried out a research and development of methods for calculating connections, an analysis of the self-drilling dowels` performance, and the factors affecting the load bearing capacity according to Eurocode 5 have been specified. The results obtained have been compared with other various research methods` results, there are offered authors` recommendations on the application of the standard in Russia.


2012 ◽  
Vol 540 ◽  
pp. 70-82 ◽  
Author(s):  
Jong-hyun Baek ◽  
Young-pyo Kim ◽  
Woo-sik Kim ◽  
Jae-min Koo ◽  
Chang-sung Seok

Sign in / Sign up

Export Citation Format

Share Document