Influence of Screw Spacing on the Strength of Self-Drilling Screw Connection for the High Strength Cold-Formed Steel

2013 ◽  
Vol 712-715 ◽  
pp. 1054-1057 ◽  
Author(s):  
Siti Fairuz Sapiee ◽  
Hieng Ho Lau

Self-drilling screws are the primary means of fastening for cold-formed steel members in cold-formed thin-gauge steel residential construction because it can drill their own holes and form their own threads. The fabrication of connections is the most labour intensive aspect of the cold-formed thin-gauge steel construction process, thus a better understanding of the behaviour of screw connections could lead to optimum connection design and reducing the cost of the fabrication. The study carried out to investigate the behaviour of single-shear connections using self-drilling screws in the cold-formed steel construction. The focus of this study is on the influence of the number of screws and screw spacing on the strength of self-drilling screw connection. These parameters are varied to determine their influences on the connection strength. The failure load and failure modes were obtained and observed from the tests carried out in the laboratory. Bearing and tilting failures occurred during the testing of these specimens. The predicted connection strengths were calculated using American Iron and Steel Institute (AISI) design equations. A total of 24 specimens of single shear test showed that connection strength is linearly proportional to the number of screw in the connection. Results of the specimen with spacing more than 3d show better correlation with the calculated results as compared to specimens with screw spacing less than 3d.

Author(s):  
Bernardo A. Lejano

<p>Getting good lumber for housing construction is becoming difficult in the Philippines due to existing partial log ban. Although, the use of reinforced concrete is still the most popular in construction, an emerging alternative is the use of cold-formed steel (CFS). It is gaining popularity because of its high strength-to- weight ratio. However, information about the structural performance of locally-produced cold-formed steel is almost nonexistent. Although, design provisions are stipulated in the local Code, these are based on formulas developed abroad, hence the need to investigate these cold-formed steel. This study focuses on the C-section cold-formed steel, which is the most popularly used. The objective is to verify its performance when subjected to axial compression and flexure, both experimentally and computationally. For the computational part, the formulas stipulated in the National Structural Code of the Philippines were followed. For the experimental part, the cold-formed steel members were subjected to compression loads and flexural loads. Aside from usual sensors, high-speed cameras were used to capture the failure modes. For axial compression test, 80 specimens with different lengths and thicknesses were tested. For flexure, 24 specimens of back-to-back C-sections were subjected to 4-point bending test. Results showed the predicted strengths were well below the experimental values. In design, this means the use of Code-based formulas is conservative. Failure modes observed were torsional buckling and distortional buckling. Comparison of failure modes between experiment and computation shows 70% agreement for compression and 75% for flexure. Finite element method calculations were also done and were compared with experimental results.</p>


2014 ◽  
Vol 501-504 ◽  
pp. 1609-1614
Author(s):  
Zhong Peng ◽  
Jun Huang ◽  
Shao Bin Dai ◽  
Ji Xiong Liu

3 medium thick-walled cold-formed steel top-and-seat angle joints were designed. The ABAQUS nonlinear finite element analysis on earthquake resistance behaviors of the joints were conducted under low cyclic loading. The results indicate that the failure processes and failure modes of 3 specimens are basically the same, the destruction of joints derive from buckling deformation of the top-and-seat angle and buckling of the steel beam flanges; the shapes of hysteresis curves of all specimens are obvious pinch together and present spindle, the displacement ductility factors are greater than 5.5, the equivalent viscous damping factors are greater than 0.158, all the specimens possess good energy dissipation capacity. The secant stiffness variations are almost similar, each specimen represents significant degradation. Increase the thickness of angle and diameter of high-strength bolt can improve the mechanical performance of the joints. Increase the bolt diameter, the ductility, energy dissipation capacity and initial stiffness enhance obviously, however, there is no apparent effect while increasing the thickness of angle.


Author(s):  
Yan-Bo Wang ◽  
Yi-Fan Lyu ◽  
Guo-Qiang Li

This paper presents an experimental research on bearing-type bolted connections consisting of two bolts positioned perpendicular to the loading direction. A total of 24 connections in double shear fabricated from high strength steels with yield stresses of 677MPa and 825MPa are tested. Two failure modes as tearout failure and splitting failure are observed in experiments. The effect of end distance, edge distance, bolt spacing and steel grade on the failure mode and bearing behavior are discussed. For connection design with bolts positioned perpendicular to loading direction, it is further found that combination of edge distance and bolt spacing effectively determines the failure mode and ultimate load. The test results are compared with Eurocode3. An optimal combination of edge distance and bolt spacing as well as related design suggestion is thus recommended. 


Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 34
Author(s):  
Hao Liang ◽  
Krishanu Roy ◽  
Zhiyuan Fang ◽  
James B. P. Lim

The construction and building sectors are currently responsible globally for a significant share of the total energy consumption and energy-related carbon dioxide emissions. The use of Modern Methods of Construction can help reduce this, one example being the use of cold-formed steel (CFS) construction. CFS channel sections have inherent advantages, such as their high strength-to-weight ratio and excellent potential for recycling and reusing. CFS members can be rolled into different cross-sectional shapes and optimizing these shapes can further improve their load-bearing capacities, resulting in a more economical and efficient building solution. Conversely, the high thermal conductivity of steel can lead to thermal bridges, which can significantly reduce the building’s thermal performance and energy efficiency. Hence, it is also essential to consider the thermal energy performance of the CFS structures. This paper reviews the existing studies on the structural optimization of CFS sections and the thermal performance of such CFS structures. In total, over 160 articles were critically reviewed. The methodologies used in the existing literature for optimizing CFS members for both structural and thermal performances have been summarized and presented systematically. Research gaps from the existing body of knowledge have been identified, providing guidelines for future research.


In recent years the utilization of cold formed steel has been redoubled. This is because high strength to weight ratio of the cold formed steel. The thicknesses cold formed steel members usually range from 0.3 mm to 6.35 mm. The most used cold formed sections are C and Z sections. These sections can be used as secondary beams (purlins) for roof covering, side girts, decks, and panels. Scope of this present study is to investigate the effect on load carrying capacity of cold formed channel sections provided with flange stiffeners. In this project, eighteen numbers of channel sections were analysed by keeping the height to thickness ratio (h/t) as constant and by varying flange width to thickness ratio (b/t) using Ansys 14.0. The h/t ratio and b/t ratio considered are 50 and 25, 35, 45 respectively. The thickness and span of all specimens were kept as 2 mm and 1500 mm respectively. Simply supported boundary condition and two points loading was adopted for both the numerical and experimental analysis. Three numbers of channel sections were fabricated and tested experimentally to check the consistency of results with numerical analysis. The ultimate load and deformed shape of three specimens were obtained from experimental results are compared with the analytical results acquired from Ansys 14.0


2011 ◽  
Vol 9 (3) ◽  
pp. 367-378
Author(s):  
Miroslav Besevic ◽  
Danijel Kukaras

Analysis of axially compressed steel members made of cold formed profiles presented in this paper was conducted through both experimental and numerical methods. Numerical analysis was conducted by means of "PAK" finite element software designed for nonlinear static and dynamic analysis of structures. Results of numerical analysis included ultimate bearing capacity with corresponding middle section force-deflection graphs and buckling curves. Extensive experimental investigation were also concentrated on determination of bearing capacity and buckling curves. Experiments were conducted on five series with six specimens each for slenderness values of 50, 70, 90, 110 and 120. Compressed simply supported members were analyzed on Amsler Spherical pin support with unique electronical equipment and software. Besides determination of forcedeflection curves, strains were measured in 18 or 12 cross sections along the height of the members. Analysis included comparisons with results obtained by different authors in this field recently published in international journals. Special attention was dedicated to experiments conducted on high strength and stainless steel members.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Balaji Shanmugam ◽  
Manikandan Palanisamy ◽  
Paul O. Awoyera ◽  
Senthilnathan Chinnasamy ◽  
Mahalakshmi Subramaniam

This paper deals with a study conducted on flexural behavior of cold-formed steel built-up I-beams with hollow tubular flange sections. There were two types of test sections, namely, built-up sections that were assembled with either stiffened or unstiffened channels coupling back-to-back at the web and a hollow tubular rectangular flange at the top and bottom of the web to form built-up I-beam. The flexural behavior along with the strength and failure modes of the built-up sections was examined using the four-point loading system. Nonlinear finite element (FE) models were formulated and validated with the experimental test results. It was observed that the developed FE models had precisely predicted the behavior of built-up I-beams. Further, the verified FE models were used to conduct a detailed parametric study on cold-formed steel built-up beam sections with respect to thickness, depth, and yield stress of the material. The flexural strength of the beams was designed using the direct strength method as specified in American Iron and Steel Institute (AISI) for the design of cold-formed steel structural members and was compared with the experimental results and the failure loads predicted from FE models. Since the results were not conservative, a new customized design equation had been mooted and delineated in the study for determining the flexural strength of cold-formed steel built-up beams with hollow tubular flange sections.


Alloy Digest ◽  
1964 ◽  
Vol 13 (1) ◽  

Abstract MEEHANITE-GD is a high strength iron casting having high damping capacity, self-lubricating properties, and good machinability. It combines the good properties of both cast iron and steel. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness and fatigue. It also includes information on casting, heat treating, machining, and joining. Filing Code: CI-32. Producer or source: Meehanite Metal Corporation.


Alloy Digest ◽  
1954 ◽  
Vol 3 (1) ◽  

Abstract MEEHANITE GA is a high strength iron casting having high damping capacity, self-lubricating properties, and good machinability. It combines the good properties of both cast iron and steel. Applications include machine tools, gears, shafts, and housings. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness and fatigue. It also includes information on heat treating and machining. Filing Code: CI-5. Producer or source: Meehanite Metal Corporation.


Sign in / Sign up

Export Citation Format

Share Document