scholarly journals Preparation of 9-hydroxynonanoic acid methyl ester by ozonolysis of vegetable oils and its polycondensation

2008 ◽  
Vol 62 (6) ◽  
pp. 319-328 ◽  
Author(s):  
Ivana Cvetkovic ◽  
Jelena Milic ◽  
Mihail Ionescu ◽  
Zoran Petrovic

Vegetable oil-based and potentially biodegradable polyesters were prepared from 9-hydroxynonanoic acid methyl ester. This paper describes ozonolysis of vegetable oils and the method for preparation of useful monomers and in particular 9-hydroxynonanoic acid methyl ester. Ozonolysis of soybean oil and castor oil in methanol and methylene chloride solution, followed by reduction with sodium borohydride was used to obtain a mixture of triols, diols and monols. Triglyceride triols were separated from the rest of the mixture and transesterified with methanol to obtain methyl esters of fatty acids and glycerin. The main component of fatty acids was 9-hydroxynonanoic acid methyl ester, which was characterized and used for polycondensation by transesterification. High molecular weight polyhydroxy alcanoate was a solid having a melting point of 75?C. The molecular weight of the resulting polyester was affected by the purity of the monomer and side reactions such as cyclization. The polymer was characterized by chromatographic, thermal and analytical methods.

2020 ◽  
Vol 14 (3) ◽  
pp. 327-339
Author(s):  
M. Jamshaid ◽  
H. H. Masjuki ◽  
M. A. Kalam ◽  
N. W. M. Zulkifli ◽  
A. Arslan ◽  
...  

This paper presents the experimental results carried out to evaluate the fatty acid methyl ester (FAME) obtained from cotton-seed oil and palm oil on fuel-injector wear characteristics. The cottonseed oil methyl ester (COME) and palm oil methyl ester (POME) were produced in the laboratory using alkaline transesterification. Gas chromatography based on 'BS EN 14103:2011' standard was used to analyze the percentage of fatty acids in COME and POME. The physicochemical properties of the two methyl esters were measured based on ASTM and EN standards. Various unique blends using cottonseed–palm oil methyl ester (CPME) were tested. Thirteen (13) different types of fuel blends were prepared from COME, POME, and petroleum diesel fuel (DF100). The wear and lubricity characteristics were measured using a high-frequency reciprocating rig (HFRR) based on ASTM D6079 standard. The worn surfaces of the specimen plates were evaluated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The COME100, POME100, and CPME100 showed excellent lubricity properties for the fuel injector in terms of lower COF and wear coefficient when compared with DF100. COME100, POME100 and CPME100 showed lower average COF compared to DF100 by 16.9%, 13.9% and 16.1%, respectively. This may be due to the presence of unsaturated fatty acids in the methyl esters composition. Consequently, the fatty acid methyl esters can be used to reduce the friction and wear of the fuel injectors due to the improvement in the tribological properties of the fuel.


2021 ◽  
Vol 11 (12) ◽  
pp. 5413
Author(s):  
Keiko Iwasa ◽  
Harumichi Seta ◽  
Yoshihide Matsuo ◽  
Koichi Nakahara

This paper reports on the chemical compounds in arabica coffee beans with a high Specialty Coffee Association (SCA) cupping score, especially those in specialty coffee beans. We investigated the relationship between the chemical compounds and cupping scores by considering 16 types of Coffea arabica (arabica coffee) beans from Guatemala (SCA cupping score of 76.5–89.0 points). Non-targeted gas chromatography-mass spectrometry-based chemometric profiling indicated that specialty beans with a high cupping score contained considerable amounts of methyl-esterified compounds (MECs), including 3-methylbutanoic acid methyl ester (3-MBM), and other fatty acid methyl esters. The effect of MECs on flavor quality was verified by spiking the coffee brew with 3-MBM, which was the top-ranked component, as obtained through a regression model associated with cupping scores. Notably, 3-MBM was responsible for the fresh-fruity aroma and cleanness of the coffee brew. Although cleanness is a significant factor for specialty beans, the identification of compounds that contribute to cleanness has not been reported in previous research. The chemometric profiling approach coupled with spiking test validation will improve the identification and characterization of 3-MBM commonly found in arabica specialty beans. Therefore, 3-MBM, either alone or together with MECs, can be used as a marker in coffee production.


2015 ◽  
Vol 787 ◽  
pp. 766-770 ◽  
Author(s):  
J. Thangaraja ◽  
S. Rajkumar

Biodiesel is a renewable fuel and an attractive alternative to replace fossil diesel without major engine modifications. However, the emissions of oxides of nitrogen (NOx) from biodiesel fuelled engines are reported to be higher compared to diesel engine. The characteristics of biodiesel are known to depend on their fatty acid methyl ester (FAME) contents which vary with the feedstock. Thus the contribution of saturation and unsaturation of pure components of fatty acid methyl esters on NOx formation warrants a systematic investigation. This paper attempts to relate the composition of biodiesel with NOx formation. For this purpose, the NO formation from pure fatty acid methyl esters are predicted using extended Zeldovich reaction scheme. Also, the experiments are conducted for measuring oxides of nitrogen from a compression ignition engine operated using neat palm and karanja methyl esters and their blends providing biodiesel combinations of varying degree of saturation for investigation. The measured NOx concentrations are compared with the corresponding predictions to affirm the influence of fatty acid methyl ester on engine NOx characteristics. The results clearly indicate that the change in degree of saturation influences the NOx formation and an increase in the degree of saturation of biodiesel decreases the engine NOx emission.


2003 ◽  
Vol 58 (7-8) ◽  
pp. 502-504 ◽  
Author(s):  
Ahmet C. Gören ◽  
Gökhan Bilsel ◽  
Mehmet Altun ◽  
Fatih Satıl

Abstract The chemical composition of fatty acid methyl esters (FAMEs) from seeds of S. thymbra and S. cuneifolia were analyzed by GC/MS. 7 FAMEs were identified from the seeds of S. thymbra mainly as 9-octadecenoic acid methyl ester (43.9%), hexadecanoic acid methyl ester (11.4%), 9,12,15-octadecatrienoic acid methyl ester (Z,Z,Z) (30.2%), and octadecanoic acid methyl ester (14.1%), while from the seed of S. cuneifolia 10 FAMEs were obtained with the main components, similar to S. thymbra. These were identified as 9-octadecenoic acid methyl ester (10.1%), hexadecanoic acid methyl ester (methyl palmitate, 34.6%), 9,12,15-octadecatrienoic acid methyl ester (Z,Z,Z) (6.3%) and octadecanoic acid methyl ester (1.8%).


2017 ◽  
Vol 9 (26) ◽  
pp. 3949-3955
Author(s):  
Rodrigo V. P. Leal ◽  
Gabriel F. Sarmanho ◽  
Luiz H. Leal ◽  
Bruno C. Garrido ◽  
Lucas J. Carvalho ◽  
...  

Fatty acid methyl ester (FAME) intensities, by ESI-MS, used to their quantification in biodiesel.


2017 ◽  
Vol 7 (17) ◽  
pp. 3659-3675 ◽  
Author(s):  
S. M. Danov ◽  
O. A. Kazantsev ◽  
A. L. Esipovich ◽  
A. S. Belousov ◽  
A. E. Rogozhin ◽  
...  

The present critical review reports the recent progress of the last 15 years in the selective epoxidation of vegetable oils and their derivatives, in particular unsaturated fatty acids (UFAs) and fatty acid methyl esters (FAMEs).


1967 ◽  
Vol 34 (2) ◽  
pp. 115-121 ◽  
Author(s):  
Ragnar Ryhage

SummaryThe identification and approximate quantitative determination of methyl esters of fatty acids from commercial butterfat was obtained with a combined gaschromatograph-mass spectrometer instrument. Fifty-two components, straight chain saturated and unsaturated, as well as branched chain compounds, were identified. Seven monomethyl saturated fatty acid methyl ester isomers were identified for both C15 and C17, i.e. with chain lengths of 14 and 16 carbon atoms, respectively. Multibranched fatty acids with molecular weights of 326 and 368 were found. The results were obtained in one day.


Sign in / Sign up

Export Citation Format

Share Document