scholarly journals Ploughing down harvest residues of preceding crops for the purpose of soybean yield improvement

2019 ◽  
Vol 64 (3) ◽  
pp. 215-224
Author(s):  
Vojin Djukic ◽  
Zlatica Miladinov ◽  
Gordana Dozet ◽  
Svetlana Balesevic-Tubic ◽  
Jegor Miladinovic ◽  
...  

Soybean yield depends on the choice of cultivar, soil fertility, cultivation practices, and weather conditions in different years. Ploughing down crop residues increases the content of soil organic matter, and thereby positively affects soil fertility. The use of crop residues as an energy source has been promoted in recent years. It would be wrong to refer to this as a renewable energy source as the removal of crop residues from agricultural fields reduces and ultimately damages soil fertility, which in turn leads to reduced yield and a crop residue decrease in the future. Due to the reduced application of manure and organic fertilisers, it is necessary to return crop residues to the soil to preserve soil structure and prevent soil fertility decline. The effect of ploughing down crop residues of preceding crops on soybean yield has been the focus of studies for eleven years. Ploughing down maize crop residues resulted in the soybean yield increase by about 11.69%, i.e. the annual yield increase ranged from 2.89% to 15.94%.

2021 ◽  
Vol 272 ◽  
pp. 108269
Author(s):  
Zhihuang Xie ◽  
Yansheng Li ◽  
Zhenhua Yu ◽  
Guanghua Wang ◽  
Caixian Tang ◽  
...  

Author(s):  
R. K. Naresh ◽  
S. S. Dhaliwal ◽  
M. S. Chandra ◽  
S. K. Malhotra ◽  
J. Harish ◽  
...  

Residues of various crops are considered nuisance but they can be helpful in increasing organic matter in soil and better cycling of nutrients in soil if managed properly. Better management and utilization of crop residues (CR) is necessary for better productivity and quality of crops. Sowing into loose residues is the major issue in adapting the drill sowing method. Apart from the higher quantity of rice (192.82 mt) and wheat residue (120.70 mt), the residue of sorghum, maize, barley, chickpea, groundnut, rapeseed, mustard, sugarcane trash, potato, soybean, sunflower and some other minor cereals also contribute substantially towards total amount of about 462.93 million tonnes in India in 1997-98. Three quarters of the total residue is produced by rice, wheat and oil seed crops with remaining quarter coming from sugarcane and sorghum. Crop residue is important component of low external input for sustainable agriculture without sacrificing productivity. The crop residues left behind is considered as burden forcing farmers to burn them as cheap and easiest method with mistaken belief that it enhances the soil fertility and helps in controlling weeds, insects and pests. Different studies revealed that burning of residues causes air pollution and nutrient loss in soil. Improvements in soil properties and the sustainability in crop productivity could be achieved if CR are proper managed. Long-term field studies at sites carefully selected with variations in temperature, moisture, soil mineralogy and management of agricultural residues representing various cropping systems across regions should be identified and sustained. The possible benefits of crop residues for the improvement of degrading soil fertility would be completely understood only then. Owing to the competing requirements for such biomass for feed, fuel or building material, smallholder farmers typically find it difficult to maintain a soil cover for crop residue or a cover crop.


Author(s):  
Jubuli Sahu ◽  
Muneswar Prasad ◽  
Raghubar Sahu ◽  
Dharmendra Kumar ◽  
Sanjay Kumar Mandal ◽  
...  

An effort has been made to study the effect of climate change on crop residues and need of crop residue management in present environmental condition. Crop residue management as an important practiced in the rice–wheat cropping system. In present condition, cropping season is shifted according to changing rainfall pattern. In case of wheat and rice-based cropping system, there is a chance of crop loss due to occurrence of rainfall at harvesting stage so, to cope with that situation combine harvesters become more popularize among farmers because of effective harvesting in less time, less effort and minimum labour cost. But it lefts a huge amount of loose straw in their field and farmers face difficulties in the disposal of huge straw in the field in short time has compelled to go for crop residue burning to save time as well labour. Farmers can use that residues in vermi-composting, can be fed to animals after urea treatment etc. without burning. In recent year 30-40% maize crop have been damaged due to hailstorm at its grain filling stage so these residues can be used in making silage. Removal of straw or stover can result in significant loss of soil organic carbon (SOC). If they are used as bedding for livestock, then much of the carbon may be returned to the soil as manure (Lal et al., 1998). When crop-residue is incorporated into soil, the soil’s physical properties and its water-holding capacity are enhanced. Unlike in earlier conservation farming systems wherein retained stubble was mulched and slashed, now it is mostly burned by the farmers. Vermicomposting, waste decomposer, Green Manuring, use of zero tillage machine, silage making and urea treated straw are the best option to crop residue management. The study aimed to examine the present status of crop residue management of major crops and its impact on farmers’ livelihood covering eleven blocks in Banka district of Bihar.


Author(s):  
Kenneth J. Gondwe ◽  
Sosten S. Chiotha ◽  
Theresa Mkandawire ◽  
Xianli Zhu ◽  
Jyoti Painuly ◽  
...  

Crop residues have been undervalued as a source of renewable energy to displace coal in the national energy mix for greenhouse emission reduction in Malawi. Switching to crop residues as an alternative energy source for energy-intensive industries such as cement manufacturing is hampered by uncertainties in crop residue availability, cost and quality. In this study, future demand for energy and availability of crop residues was assessed, based on data at the sub-national level. Detailed energy potentials from crop residues were computed for eight agricultural divisions. The results showed that the projected total energy demands in 2020, 2025 and 2030 were approximately 177 810 TJ, 184 210 TJ and 194 096 TJ respectively. The highest supply potentials were found to be in the central and southern regions of Malawi, coinciding with the locations of the two clinker plants. Crop residues could meet 45–57% of the national total energy demand. The demand from the cement industry is only 0.8% of the estimated biomass energy potential. At an annual production of 600 000 t of clinker and 20% biomass co-firing with coal, 18 562 t of coal consumption would be avoided and 46 128 t of carbon dioxide emission reduction achieved per year. For sustainability, holistic planning and implementation would be necessary to ensure the needs of various users of crop residues are met. Furthermore, there would be a need to address social, economic and environmental barriers of the crop residue-based biomass energy supply chain. Future research should focus on local residue-to-product ratios and their calorific values.


2016 ◽  
Vol 38 ◽  
pp. 07
Author(s):  
Geovane Webler ◽  
Débora Regina Roberti ◽  
Marcelo Bortoluzzi Diaz ◽  
Claudio Alberto Teichrieb ◽  
Anderson Luiz Zwirtes ◽  
...  

The presence of crop residue on the soil surface has an impact on evaporation, water storage, soil temperature and soil heat flux. Consequently, changes the energy transfer in the soil-atmosphere system. The objective of this work is study the influence of crop residues in the soil thermal variables. It was concluded that the thermal effect of a straw layer is large, leading to surface temperature differences around 10°C. With depth increasing, the effect of straw coverage decreases, leading to a temperature difference to 4°C of 5cm depth. The most important consequence of higher temperature on bare ground is an increase of soil heat flux. In stable weather conditions, this difference can reach 29 W/m2.


RSC Advances ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 508-520 ◽  
Author(s):  
Dinesh Mohan ◽  
Kumar Abhishek ◽  
Ankur Sarswat ◽  
Manvendra Patel ◽  
Prachi Singh ◽  
...  

A sustainable solution to crop residues burning by converting residues into biochars is provided.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4836 ◽  
Author(s):  
Marie-Pierre Hiel ◽  
Sophie Barbieux ◽  
Jérôme Pierreux ◽  
Claire Olivier ◽  
Guillaume Lobet ◽  
...  

Society is increasingly demanding a more sustainable management of agro-ecosystems in a context of climate change and an ever growing global population. The fate of crop residues is one of the important management aspects under debate, since it represents an unneglectable quantity of organic matter which can be kept in or removed from the agro-ecosystem. The topic of residue management is not new, but the need for global conclusion on the impact of crop residue management on the agro-ecosystem linked to local pedo-climatic conditions has become apparent with an increasing amount of studies showing a diversity of conclusions. This study specifically focusses on temperate climate and loamy soil using a seven-year data set. Between 2008 and 2016, we compared four contrasting residue management strategies differing in the amount of crop residues returned to the soil (incorporation vs. exportation of residues) and in the type of tillage (reduced tillage (10 cm depth) vs. conventional tillage (ploughing at 25 cm depth)) in a field experiment. We assessed the impact of the crop residue management on crop production (three crops—winter wheat, faba bean and maize—cultivated over six cropping seasons), soil organic carbon content, nitrate (${\mathrm{NO}}_{3}^{-}$), phosphorus (P) and potassium (K) soil content and uptake by the crops. The main differences came primarily from the tillage practice and less from the restitution or removal of residues. All years and crops combined, conventional tillage resulted in a yield advantage of 3.4% as compared to reduced tillage, which can be partly explained by a lower germination rate observed under reduced tillage, especially during drier years. On average, only small differences were observed for total organic carbon (TOC) content of the soil, but reduced tillage resulted in a very clear stratification of TOC and also of P and K content as compared to conventional tillage. We observed no effect of residue management on the ${\mathrm{NO}}_{3}^{-}$ content, since the effect of fertilization dominated the effect of residue management. To confirm the results and enhance early tendencies, we believe that the experiment should be followed up in the future to observe whether more consistent changes in the whole agro-ecosystem functioning are present on the long term when managing residues with contrasted strategies.


Soil Research ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 1 ◽  
Author(s):  
Christopher Poeplau ◽  
Lisa Reiter ◽  
Antonio Berti ◽  
Thomas Kätterer

Crop residue incorporation (RI) is recommended to increase soil organic carbon (SOC) stocks. However, the positive effect on SOC is often reported to be relatively low and alternative use of crop residues, e.g. as a bioenergy source, may be more climate smart. In this context, it is important to understand: (i) the response of SOC stocks to long-term crop residue incorporation; and (ii) the qualitative SOC change, in order to judge the sustainability of this measure. We investigated the effect of 40 years of RI combined with five different nitrogen (N) fertilisation levels on SOC stocks and five SOC fractions differing in turnover times on a clay loam soil in Padua, Italy. The average increase in SOC stock in the 0–30cm soil layer was 3.1Mgha–1 or 6.8%, with no difference between N fertilisation rates. Retention coefficients of residues did not exceed 4% and decreased significantly with increasing N rate (R2=0.49). The effect of RI was higher after 20 years (4.6Mgha–1) than after 40 years, indicating that a new equilibrium has been reached and no further gains in SOC can be expected. Most (92%) of the total SOC was stored in the silt and clay fraction and 93% of the accumulated carbon was also found in this fraction, showing the importance of fine mineral particles for SOC storage, stabilisation and sequestration in arable soils. No change was detected in more labile fractions, indicating complete turnover of the annual residue-derived C in these fractions under a warm humid climate and in a highly base-saturated soil. The applied fractionation was thus useful to elucidate drivers and mechanisms of SOC formation and stabilisation. We conclude that residue incorporation is not a significant management practice affecting soil C storage in warm temperate climatic regions.


2019 ◽  
Vol 18 (1) ◽  
pp. 123-132
Author(s):  
CRIZ RENÊ ZANOVELLO ◽  
FABIANO PACENTCHUK ◽  
JAQUELINE HUZAR-NOVAKOWISKI ◽  
GUILHERME ZAMBONIN ◽  
ANTHONY HASEGAWA SANDINI ◽  
...  

RESUMO – O milho é uma planta monoica, e a geração de novos híbridos exige a remoção do pendão das plantas.Sabe-se que a remoção do pendão possui efeito negativo na produtividade da cultura. Contudo, a aplicação de Ncomplementar, via foliar, poderia minimizar essas perdas. Assim, o objetivo deste estudo foi avaliar como o Ncomplementar afeta a produtividade e os componentes de rendimento da cultura do milho submetida ao despendoamento.O estudo foi conduzido em delineamento de blocos casualizados em esquema fatorial 2 x 3 x 5, sendo duas safras(2014/15 e 2015/16), três momentos de despendoamento (sem despondoamento, arranquio de 2-3 folhas e arranquiode 4-5 folhas antes do pendoamento) e cinco doses de N complementar (0, 5, 10, 15, 20 L ha-1) aplicadas no estádio depré-pendoamento (VT). Não foi verificada interação N complementar X despendoamento para nenhuma das variáveisestudadas. A menor produtividade foi verificada no despendoamento de 4-5 folhas. A aplicação de N complementaraumentou a produtividade da cultura do milho, e a aplicação de 11,5 L ha-1 incrementou a produtividade em 448 kgha-1. O despendoamento diminuiu a produtividade da cultura do milho, quanto mais precoce o despendoamento, maisnegativo é o efeito na produtividade.Palavras-chave: Melhoramento genético, N complementar, pendoamento, produção de sementes, Zea mays.FOLIAR APPLICATION OF COMPLEMENTARY NITROGEN,IN MAIZE SUBJECTED TO DETASSELINGABSTRACT – Maize is a monoic plant and the generation of new hybrids requires the removal of the tassel from theplants, which has a negative effect on crop yield. However, the use of complementary leaf nitrogen (N) fertilization,could minimize the yield losses. Therefore, the objective of this study was to evaluate the effect os the application ofcomplementary N affects on yield of the maize crop subjected to detasseling. The study was carried out in a randomizedcomplete block design, with a 2 x 3 x 5 factorial scheme and four replications. Two growing seasons (2014/15 and2015/16), three detasseling moments (without detasseling, detasseling of 2-3 leaves, and detasseling of 4-5 leaves)and five doses of complementary N (0, 5, 10, 15, 20 L ha-1) applied at the VT stage. There was no interaction betweencomplementary N and detasseling for any of the variables studied. The lowest yield was verified with the detasselingof 4-5 leaves. The application of complementary N showed a positive effect on maize yield, and the application of 11.5L ha-1 of complementary N provided yield increase of 448 kg ha-1. The detasseling technique had negative effects onmaize crop yield, the earlier is the detasseling, the more negative is the effect on yield.Keywords: Genetic improvement, Seed production, tasseling, Zea mays.


2015 ◽  
Vol 17 (1) ◽  
pp. 41-46 ◽  
Author(s):  
MA Haque ◽  
P Bala ◽  
AK Azad

A field experiment was conducted at the farm of Bangladesh Agricultural University, Mymensingh during November 2009 to March 2010 to study the response of three lentil varieties (viz., BARI Masur-1, BARI Masur-2 and BARI Masur-3) to Rhizobium inoculations to yield. There were three Rhizobium inoculants (Rhizobium strain BINA L4, Rhizobium strain TAL 640, and mixed culture) with uninoculated control and urea @ 50 kg ha-1. Phosphorus and potassium @ 26 kg P ha-1from TSP and 33 kg K ha-1 from MP were used as basal. It was observed that Rhizobium inoculation alone increased plant height, grain yield and crop residues yield of plant significantly compared to uninoculated control. Local inoculants BINA L4 performed better than the exotic culture TAL 640 in respect of yield. 50 kg urea ha-1 also recorded better results than control but not superior to any of the inoculation treatments. The highest seed (1,565 kg ha-1) and crop residue yields (3,303 kg ha-1) were recorded from the lentil variety BARIMasur-3 inoculated with mixed culture.Bangladesh Agron. J. 2014, 17(1): 41-46


Sign in / Sign up

Export Citation Format

Share Document