scholarly journals Fluidized bed combustion of pesticide-manufacture liquid wastes

2010 ◽  
Vol 75 (4) ◽  
pp. 523-535 ◽  
Author(s):  
Zorana Arsenijevic ◽  
Zeljko Grbavcic ◽  
Bosko Grbic ◽  
Nenad Radic ◽  
Radmila Garic-Grulovic ◽  
...  

Industrial liquid wastes can be in the form of solutions, suspensions, sludges, scums or waste oil and have organic properties. The objective of this work was to demonstrate the technical feasibility of a fluidized bed as a clean technology for burning liquid waste from a pesticide production plant. The combustion of liquid waste mixtures, obtained from realistic samples, was investigated in a pilot scale fluidized bed with quartz sand particles of 0.63-1.25 mm in diameter and 2610 kg/m3 in density at 800-950?C. To ensure complete combustion of liquid waste and additional fuel, the combustion chamber was supplied with excess air and the U/UmF (at ambient temperature) was in between 1.1 and 2.3. In the fluidized bed chamber, liquid waste, additional liquid fuel and air can be brought into intense contact sufficient to permit combustion in bed without backfire problems. The experimental results show that the fluidized bed furnace offers excellent thermal uniformity and temperature control. The results of the combustion tests showed that degradation of liquid wastes can be successfully realized in a fluidized bed with no harmful gaseous emissions by ensuring that the temperatures of both the bed and the freeboard are not lower than 900?C.

2003 ◽  
Vol 7 (2) ◽  
pp. 33-42
Author(s):  
Emmanuel Kakaras ◽  
Panagiotis Grammelis ◽  
George Skodras ◽  
Panagiotis Vourliotis

The paper is an overview of the results obtained up to date from the combustion and co-combustion activities with Greek brown coal in different installations, both in semi-industrial and laboratory scale. Combustion tests with Greek lignite were realized in three different Circulating Fluidized Bed Combustion (CFBC) facilities. Low rank lignite was burned in a pilot scale facility of approx. 100kW thermal capacity, located in Athens (NTUA) and a semi-industrial scale of 1.2 MW thermal capacity, located at RWE's power station Niederaussem in Germany. Co-combustion tests with Greek xylitic lignite and waste wood were carried out in the 1 MWth CFBC installation of AE&E, in Austria. Lab-scale co-combustion tests of Greek pre-dried lignite with biomass were accomplished in a bubbling fluidized bed in order to investigate ash melting problems. The obtained results of all aforementioned activities showed that fluidized bed is the appropriate combustion technology to efficiently exploit the low quality Greek brown coal either alone or in conjunction with biomass species.


Author(s):  
Silvia L. Floriani ◽  
Elaine Virmond ◽  
Christine Albrecht Althoff ◽  
Regina F. P. M. Moreira ◽  
Humberto J. Jose´

Biomass is currently used as an alternative energy source in some industries. Due to problems with disposal of wastes, using biomass as an energy source is economically and environmentally attractive. In this work seven wastes from textile and food industry were characterized and their gaseous emissions resulting from their combustion in a pilot unit were measured. The aim of this paper is to evaluate the usage of industrial wastes as an energy source taking into account their composition and gaseous emissions when submitted to combustion tests. Gaseous emissions were compared to limits imposed by Brazilian and international current legislations. Volatile organic compounds (VOC) were analyzed by GC-MS and their content values were expressed as total organic carbon (TOC). Four combustion tests were carried out in a cyclone combustor and all TOC emissions were below regulations limits. CO, CO2, NOx, CxHy and SO2 were also measured. Chemical properties showed that the volatile matter values of all biomass were high what indicate that the solids burn rapidly and some biomass presented high levels of sulphur and consequently high levels of emission of SO2 when burned. The lower heating values ranged from 14.22 to 22.93 MJ.kg−1. Moisture content and particulate matter (PM) were measured during the combustion tests and showed effective combustion conditions. Thermogravimetric analysis of the biomasses showed ignition temperatures and maximum burning rate which were compared to other papers data. The usage of these biomasses as an energy source is possible however gas treatment would be required specially if the solid presents high levels of sulphur and chlorine.


1987 ◽  
Vol 109 (2) ◽  
pp. 49-57 ◽  
Author(s):  
K. Annamalai ◽  
M. Y. Ibrahim ◽  
J. M. Sweeten

Manure from cattle feedlots is a renewable energy source which has the potential of supplementing the existing fossil fuels. But the heat content of manure is rather low. Since, the fluidized bed combustion technology has been used for the energy conversion of marginal fuels, such a technology is being explored for the combustion of feedlot manure. A fluidized bed combustor of 0.15 m (6 in.) diameter was used for the combustion tests on manure. Experiments were conducted with −20 to +20 percent excess air and at bed temperatures ranging from 600°C (1112°F) to 800°C (1472°F). Experimental data revealed that the gasification efficiencies ranged from 90 to 98 percent, while the combustion efficiencies varied from 45 to 85 percent. Higher combustion efficiencies were obtained with decreased volatile solids content of manure. The low combustion efficiencies are attributed to the limited residence time available for the volatiles to burn within the reactor.


2019 ◽  
Vol 191 (9) ◽  
pp. 1661-1676 ◽  
Author(s):  
A. Cammarota ◽  
F. Cammarota ◽  
R. Chirone ◽  
G. Ruoppolo ◽  
R. Solimene ◽  
...  

1972 ◽  
Vol 94 (2) ◽  
pp. 127-132 ◽  
Author(s):  
F. D. Friedrich ◽  
G. K. Lee ◽  
E. R. Mitchell

The report describes combustion tests with Bienfait lignite from Saskatchewan and Onakawana lignite from James Bay. They were burned in a pilot-scale, pulverized-fired boiler primarily to study combustion performance and fireside fouling tendencies under slag-tap conditions. Flame stability and complete combustion were readily obtained, although satisfactory slag tapping was not achieved with either fuel. Fireside ash deposit samples, representing each fuel, were collected from various parts of the boiler and subjected to exhaustive analyses. The results indicate that, when burning Bienfait lignite, selective deposition of ash constituents takes place, resulting in a eutectic composition downstream of the furnace exit. In the case of Onakawana lignite, selective ash deposition did not occur. Deposit analyses, fusion temperatures, and enrichment ratios are given for both fuels.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Zhiwei Li ◽  
Hongzhou He

Experiments on cofiring dried sewage sludge, wet sewage sludge with coal and polyethylene (PE) were carried out on a pilot scale 0.15MWt circulating fluidized bed combustion (CFBC) plant, and the influence of furnace temperatures, cofiring rates on N2O and NO emissions was investigated. Temperature is an effective parameter influencing N2O emission, and higher temperature leads to significant N2O reduction and decrease of conversion ratio of fuel-N to N2O. Increasing in cofiring rates leads to higher nitrogen content in the mixed fuel, which could result in higher NO and N2O emissions from combustion. With more sewage sludge addition, higher NO but lower N2O emissions are observed. N2O emission from cofiring wet sewage sludge with coal is higher than that from cofiring dried sewage sludge with coal and PE, and fuel-N conversion ratio to N2O and NO is much higher in cofiring wet sewage sludge with coal than that in cofiring dried sewage sludge with coal and PE.


2005 ◽  
Vol 128 (2) ◽  
pp. 104-110 ◽  
Author(s):  
I. Gulyurtlu ◽  
M. Helena Lopes ◽  
P. Abelha ◽  
I. Cabrita ◽  
J. F. Santos Oliveira

The behavior of Cd, Cr, Cu, Co, Mn, Ni, Pb, Zn, and Hg during the combustion tests of a dry granular sewage sludge on a fluidized bed combustor pilot (FBC) of about 0.3 MW was evaluated. The emissions of these heavy metals from mono-combustion were compared with those of co-combustion of the sludge with a bituminous coal. The effect of the addition of limestone was also studied in order to retain sulphur compounds and to verify its influence on the retention of heavy metals (HM). Heavy metals were collected and analyzed from different locations of the installation, which included the stack, the two cyclones, and the material removed from the bed. The results showed that the volatility of metals was rather low, resulting in emissions below the legal limits of the new directive on incineration, with the exception of Hg during the mono-combustion tests. The partitioning of metals, except for Hg, appeared to follow that of ashes, amounting to levels above 90% in the bed streams in the mono-combustion case. For co-combustion, there was a lower fixation of HM in the bed ashes, mostly originating essentially from the sewage sludge, ranging between 40% and 80%. It is believed that in this latter case, a slightly higher temperature could have enhanced the volatilization, especially of Cd and Pb. However these metals were then retained in fly ashes captured in the cyclones. In the case of Hg, the volatilisation was complete. The bed ashes were free of Hg and part of Hg was retained in the cyclones and the rest was emitted either with fine ash particles or in gaseous forms. In mono-combustion the Hg emissions from the stack (particles and gas) accounted for about 50%, although there was a significant amount unaccounted for. This appeared to have significantly decreased in the case of co-combustion, as only about 15% has been emitted, due to the retention effect of cyclone ashes which presented high quantities of unburned matter, calcium and sulphur.


2010 ◽  
Vol 91 (11) ◽  
pp. 1617-1623 ◽  
Author(s):  
T. Czakiert ◽  
K. Sztekler ◽  
S. Karski ◽  
D. Markiewicz ◽  
W. Nowak

2010 ◽  
Vol 132 (1) ◽  
Author(s):  
Silvia L. Floriani ◽  
Elaine Virmond ◽  
Danielle B. Luiz ◽  
Christine A. Althoff ◽  
Humberto J. José ◽  
...  

Industrially, many solid wastes can be classified as biomass and their usage reduces disposal costs. In this work, seven wastes from textile and food industries were characterized chemically and physically and the gaseous emissions resulting from the combustion of three of them (textile residues 3, TR3; coffee grounds; and a mixture of meat processing industry wastewater sludge and saw dust (1:9) in weight, SS1) in a pilot scale cyclone type combustor were measured. Their potential for utilization as energy sources was assessed by comparing the emissions to current legislation. Chemical properties showed that the volatile matter values of all biomass were high, which indicate that the solids burn rapidly. Some biomass presented high levels of sulfur and consequently high levels of SO2 emission when burned. The lower heating values ranged from 6.44 MJ kg−1 (dry and ash free, daf) to 22.93 MJ kg−1 (daf) and thermogravimetric analysis of the biomasses showed ignition temperatures and maximum burning rates, which were compared with other papers’ data. Four combustion tests were carried out in a cyclone type combustor and CO, CO2, NOx, CxHy, and SO2 were measured. Moisture content and particulate matter were also measured during the combustion tests and showed effective combustion conditions. Volatile organic compounds were analyzed by gas chromatography-mass spectrometry and their content values were expressed as total organic carbon (TOC), being all TOC emissions below the limits imposed by the regulations taken as reference. Gaseous emissions were compared with limits imposed by Brazilian and international current legislations, what showed that the usage of these biomasses as energy sources is possible; however, gas treatment would be required, especially if the solid presents high levels of sulfur and chlorine.


Sign in / Sign up

Export Citation Format

Share Document