Potential of Industrial Solid Wastes as an Energy Source and Gaseous Emissions Evaluation in a Pilot Scale Burner

Author(s):  
Silvia L. Floriani ◽  
Elaine Virmond ◽  
Christine Albrecht Althoff ◽  
Regina F. P. M. Moreira ◽  
Humberto J. Jose´

Biomass is currently used as an alternative energy source in some industries. Due to problems with disposal of wastes, using biomass as an energy source is economically and environmentally attractive. In this work seven wastes from textile and food industry were characterized and their gaseous emissions resulting from their combustion in a pilot unit were measured. The aim of this paper is to evaluate the usage of industrial wastes as an energy source taking into account their composition and gaseous emissions when submitted to combustion tests. Gaseous emissions were compared to limits imposed by Brazilian and international current legislations. Volatile organic compounds (VOC) were analyzed by GC-MS and their content values were expressed as total organic carbon (TOC). Four combustion tests were carried out in a cyclone combustor and all TOC emissions were below regulations limits. CO, CO2, NOx, CxHy and SO2 were also measured. Chemical properties showed that the volatile matter values of all biomass were high what indicate that the solids burn rapidly and some biomass presented high levels of sulphur and consequently high levels of emission of SO2 when burned. The lower heating values ranged from 14.22 to 22.93 MJ.kg−1. Moisture content and particulate matter (PM) were measured during the combustion tests and showed effective combustion conditions. Thermogravimetric analysis of the biomasses showed ignition temperatures and maximum burning rate which were compared to other papers data. The usage of these biomasses as an energy source is possible however gas treatment would be required specially if the solid presents high levels of sulphur and chlorine.

2010 ◽  
Vol 132 (1) ◽  
Author(s):  
Silvia L. Floriani ◽  
Elaine Virmond ◽  
Danielle B. Luiz ◽  
Christine A. Althoff ◽  
Humberto J. José ◽  
...  

Industrially, many solid wastes can be classified as biomass and their usage reduces disposal costs. In this work, seven wastes from textile and food industries were characterized chemically and physically and the gaseous emissions resulting from the combustion of three of them (textile residues 3, TR3; coffee grounds; and a mixture of meat processing industry wastewater sludge and saw dust (1:9) in weight, SS1) in a pilot scale cyclone type combustor were measured. Their potential for utilization as energy sources was assessed by comparing the emissions to current legislation. Chemical properties showed that the volatile matter values of all biomass were high, which indicate that the solids burn rapidly. Some biomass presented high levels of sulfur and consequently high levels of SO2 emission when burned. The lower heating values ranged from 6.44 MJ kg−1 (dry and ash free, daf) to 22.93 MJ kg−1 (daf) and thermogravimetric analysis of the biomasses showed ignition temperatures and maximum burning rates, which were compared with other papers’ data. Four combustion tests were carried out in a cyclone type combustor and CO, CO2, NOx, CxHy, and SO2 were measured. Moisture content and particulate matter were also measured during the combustion tests and showed effective combustion conditions. Volatile organic compounds were analyzed by gas chromatography-mass spectrometry and their content values were expressed as total organic carbon (TOC), being all TOC emissions below the limits imposed by the regulations taken as reference. Gaseous emissions were compared with limits imposed by Brazilian and international current legislations, what showed that the usage of these biomasses as energy sources is possible; however, gas treatment would be required, especially if the solid presents high levels of sulfur and chlorine.


2018 ◽  
Vol 195 ◽  
pp. 01009
Author(s):  
Agus Maryoto ◽  
Gathot Heri Sudibyo

Production of rice husk in Central Java province is around 2,825,000 tonnes annually. It can be used as an alternative energy source to substitute coal in combustion during cement production. This study was conducted to determine the impact of rice husk as a substitute energy source in cement production. The observations of rice husk comprised calorimetric tests, physical and chemical tests, and percentage rice husk substitution for coal as firing energy. The chemical properties of the cement tested include the chemical content, MgO and SO3 contents, loss on ignition, insoluble residue, and total alkali. The results show that the chemical content of cement which is produced using rice husk as a substitute for coal in the combustion process still meets the Indonesian National Standard.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Elaine Virmond ◽  
Robson L. Schacker ◽  
Waldir Albrecht ◽  
Christine A. Althoff ◽  
Maurício de Souza ◽  
...  

The solid waste generated from the apple juice industry (apple bagasse (AB)) was characterized as a fuel, and the potential for its utilization as an alternative energy source was assessed through its combustion in a pilot scale cyclone combustor. A comparative evaluation of the AB and sawdust (SD) properties, as well as of the emissions during the combustion tests, was performed. The high energy content of AB (lower heating value (LHV) equal to 21.09 MJ kg−1), dry and ash-free (daf) basis, which is 26.9% higher than the LHV of SD (16.62 MJ kg−1, daf), and combined with the high volatile matter content (85.36 wt %, daf) improve the ignition and burning of the solids. The emissions of CO, SO2, and NOx and the total organic carbon (TOC) were compared with guideline limits established by Brazilian and international legislation. AB generated much lower CO than sawdust in spite of almost half of excess air levels (13% compared with 26%) and met even the stringent limit of the German regulation for waste incineration. The unburned carbon percentages found in the ash resulted from SD and AB combustion tests were 0.24% and 0.96% in weight, respectively. The absence of sulfur in AB composition represents an advantage with nondetectable SO2. The average level of NOx emission with SD combustion was 242 mg N m−3 and met all the regulation limits. The average NOx emission with AB combustion though was 642 mg N m−3 and met the U.S. EPA regulation but was marginally higher than the Brazilian norm by 15%. TOC concentrations remained below the limits considered even though the TOC level was higher in the AB combustion test. Polycyclic aromatic hydrocarbons (PAH) were not detected or were under the quantification limit of the equipment used in their analysis. Comparing the properties, the burning profiles of SD and AB, and the emissions from their combustion tests, it can be stated that the waste originating from the apple juice industry is suitable for direct combustion, constituting a renewable energy source for this industrial sector.


Author(s):  
Harry Iorwuese Guusu ◽  
Alex Okibe Edeoja ◽  
Jacob Sunday Ibrahim

This study evaluated the properties of bio-coal briquettes made by blending coal with beniseed (sesame seed) stalks in order to determine the optimum composition. The briquettes were produced using a hydraulic compression machine at 5, 10 and 15 bar applied to coal:biomass compositions of 100:0, 80:20, 60:40, 40:60, 20:80 and 0:100% by weight of mixture and particle sizes of 212, 300 and 600 µm. The physical, ultimate and proximate properties of the briquettes were then measured and analyzed. The results indicated that the optimum composition for producing the briquettes lies between 60:40% and 40:60%. These ranges of composition of briquettes had the lowest ignition time of 57.6s, highest percentage volatile matter of 42.7% and low percentage sulphur content of 0.38%. Furthermore, the 40:60% briquettes had the highest mean calorific value of 26.67 MJ/kg. These indicate good potentials for briquettes using coal and beniseed stalks as an alternative energy source while contributing to a friendly environment and wealth generation.


2020 ◽  
Vol 10 (2) ◽  
pp. 17-22
Author(s):  
Alpian ◽  
Raynold Panjaitan ◽  
Adi Jaya ◽  
Yanciluk ◽  
Wahyu Supriyati ◽  
...  

Charcoal briquettes can be an alternative energy and can be produced from Gerunggang and Tumih types of wood. These two types of wood are commonly found in Kalampangan Village as pioneer plants on burned peatlands. The research objective was to determine the chemical properties of charcoal briquettes produced from biomass waste from land processing without burning with several compositions of Gerunggang wood and Tumih wood. The chemical properties of charcoal briquettes refer to the Indonesian National Standard (SNI 01-6235-2000) and Standard Permen ESDM No. 047 of 2006. The results showed that all composition treatments in the ash content test, fixed carbon content and calorific value met the standards, while the test for volatile content in all treatment compositions did not meet the Indonesian National Standard (SNI 01-6235-2000). The composition of the most potential chemical properties and following the two standards used is the composition of 100% Tumih with ash content of 7.67%, volatile matter content of 27.23%, fixed carbon of 55.00%, and heating value of 5902.18 cal/g.


PERENNIAL ◽  
2007 ◽  
Vol 3 (2) ◽  
pp. 55
Author(s):  
M. Natsir Usman

The development of an alternative energy is now becoming important due to the decrease of natural energy source, The current research was conducted to observe the quality of making charcoal briquette from cocoa pod shell with the particle size of 30 mesh, 50 mesh, 70 mesh and 7 % starch as adhesive. The result showed that charcoal particle size of 70 mesh gave the best charcoal briquette quality having characteristics: moisture 10.67 %, density of 1.15 g/cm3, 18.98% ash content, 49.93 % fixed carbon, 24.99% volatile matter and the calorific value of 4372.54 cal/g. Charcoal briquette from cocoa pod shell was utilized as alternative energy. Key words: Cocoa pod shell, charcoal briquette, starch as adhesive. References


2010 ◽  
Vol 75 (4) ◽  
pp. 523-535 ◽  
Author(s):  
Zorana Arsenijevic ◽  
Zeljko Grbavcic ◽  
Bosko Grbic ◽  
Nenad Radic ◽  
Radmila Garic-Grulovic ◽  
...  

Industrial liquid wastes can be in the form of solutions, suspensions, sludges, scums or waste oil and have organic properties. The objective of this work was to demonstrate the technical feasibility of a fluidized bed as a clean technology for burning liquid waste from a pesticide production plant. The combustion of liquid waste mixtures, obtained from realistic samples, was investigated in a pilot scale fluidized bed with quartz sand particles of 0.63-1.25 mm in diameter and 2610 kg/m3 in density at 800-950?C. To ensure complete combustion of liquid waste and additional fuel, the combustion chamber was supplied with excess air and the U/UmF (at ambient temperature) was in between 1.1 and 2.3. In the fluidized bed chamber, liquid waste, additional liquid fuel and air can be brought into intense contact sufficient to permit combustion in bed without backfire problems. The experimental results show that the fluidized bed furnace offers excellent thermal uniformity and temperature control. The results of the combustion tests showed that degradation of liquid wastes can be successfully realized in a fluidized bed with no harmful gaseous emissions by ensuring that the temperatures of both the bed and the freeboard are not lower than 900?C.


2018 ◽  
Vol 4 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Olena Savchenko ◽  
◽  
Vasyl Zhelykh ◽  
Yurii Yurkevych ◽  
Khrystyna Kozak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document