scholarly journals Spectroscopic, thermal and antibacterial studies on Mn(II) and Co(II) complexes derived from thiosemicarbazone

2009 ◽  
Vol 74 (8-9) ◽  
pp. 907-915 ◽  
Author(s):  
Sulekh Chandra ◽  
Monika Tyagi ◽  
Moamen Refat

Mn(II) and Co(II) complexes having the general composition [M(L)2X2] (where L = 2-pyridinecarboxaldehyde thiosemicarbazone, M = Mn(II) and Co(II), X = Cl- and - NO3 ) were synthesized. All the metal complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, EPR, electronic spectral studies and thermogravimetric analysis (TG). Based on the spectral studies, an octahedral geometry was assigned for all the complexes. Thermal studies of the compounds suggest that the complexes are more stable than the free ligand. This fact was supported by the kinetic parameters calculated using the Horowitz-Metzger (H-M) and Coats-Redfern (C-R) equations. The antibacterial properties of the ligand and its metal complexes were also examined and it was observed that the complexes are more potent bactericides than the free ligand.

2020 ◽  
Vol 13 (3) ◽  
pp. 265-273
Author(s):  
Bekele Yirga ◽  
Achalu Chimdi ◽  
P.Thillai Arasu

In this study, Complexes of Co (II) and Ni (II) ions with Ruhmann’s purple (ligand) were successfully synthesized and characterized. The complexes of NiL2and CoL2were synthesized by using template condensation synthesis method and characterized by melting point, solubility, elemental analysis, and molar conductance, and magnetic susceptibility, infrared and electronic spectral studies. The complexes, NiL2and CoL2 are soluble in ethanol, partially soluble in Diethyl ether and chloroform and insoluble in hexane and petroleum ether. The complexes, NiL2and CoL2 neither melt nor decompose up to 4200C. The molar conductance of NiL2and CoL2 was 42 Scm2/mol and 46Scm2/mol in respectively. The molar magnetic susceptibility of two complexes was 1.74 BM for NiL2 and 2.76 BM for CoL2. The metal to ligand ratio of both metal complexes was 1:2; both metal complexes are non-electrolytes in ethanol and are paramagnetic at 210C. Based on the spectral data and other analytical data, monobasic ONO donor behavior of the ligand (Ruhmann’s purple) generates octahedral geometry for the pink-green colored Ni (II) complex and green colored Co (II) complex.


2019 ◽  
Vol 31 (8) ◽  
pp. 1819-1824
Author(s):  
Shivangi Sharma ◽  
Renu Sachar ◽  
G.D. Bajju ◽  
Vikas Sharma

A series of adducts of p-ethylphenyldithiocarbonates of copper(II) [(p-C2H5C6H4OCS2)2Cu] with ethyl pyridines and chloro pyridines have been synthesized in 1:2 molar ratio. They were characterized by elemental analysis, magnetic susceptibility and molar conductance measurements, infrared, electronic, electron spin resonance and mass spectroscopy, NMR and thermogravimetric analysis. In addition, antifungal studies of these adducts were also performed. The results revealed that the adducts have 1:2 stoichiometry, non-electrolytic and paramagnetic at room temperature. On the basis of spectral studies, a distorted octahedral geometry is proposed around copper(II) ion. ESR studies depicted elongated axial symmetry of Cu(II)adducts with nitrogen donors. Moreover, the adducts also showed potential antifungal activity against Fusarium oxysporium.


Author(s):  
VAIRALAKSHMI M ◽  
PRINCESS R ◽  
JOHNSON RAJA S

Objectives: The aim of our work was to synthesize novel mixed ligand-metal complexes and evaluation of antimicrobial, antioxidant assay, and analysis of catalytic oxidation of cyclohexane. Methods: The complexes were characterized by means of various physicochemical techniques such as elemental analysis, molar conductance, magnetic susceptibility, infrared (IR), electronic absorption, 1H NMR (proton magnetic resonance), and mass spectral studies. The antimicrobial screening study was done by disc diffusion method. The catalytic activity of the complexes was observed in the oxidation of cyclohexane using eco-friendly hydrogen peroxide as oxidant. Results: On comparing the 1H NMR and IR spectral data of free ligand and its complexes, it was found to be azomethine (CH=N) proton which is formed in the free ligand. During complexation, the azomethine proton is coordinated to the metal ion and the phenolic oxygen is coordinated to the metal ion by deprotonation. The analytical data and mass spectra of the ligand and the complexes confirm the stoichiometry of metal complexes as being of the (MLY)Cl type and the metal to ligand ratio is 1:1. The antimicrobial, antioxidant, and catalytic potential were evaluated and the result shows the better activity of the complexes than the ligand. Conclusion: It was found to be copper(II) and zinc(II) complexes which are effective against all the bacteria when compared to standard drug streptomycin. Copper(II) complex was found to be effective antibacterial agent against Aspergillus niger and Aspergillus flavus in comparison to the standard drug Nystatin. The zinc complex exhibited good catalytic activity.


2007 ◽  
Vol 2007 ◽  
pp. 1-7 ◽  
Author(s):  
Sulekh Chandra ◽  
Smriti Raizada ◽  
Monika Tyagi ◽  
Archana Gautam

A series of metal complexes of Cu(II) and Ni(II) having the general composition[M(L)X2]with benzil bis(thiosemicarbazone) has been prepared and characterized by element chemical analysis, molar conductance, magnetic susceptibility measurements, and spectral (electronic, IR, EPR, mass) studies. The IR spectral data suggest the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. On the basis of spectral studies, an octahedral geometry has been assigned for Ni(II) complexes but a tetragonal geometry for Cu(II) complexes. The free ligand and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties.


2021 ◽  
Vol 33 (9) ◽  
pp. 2207-2211
Author(s):  
Usha Bansal ◽  
Samta Goyal ◽  
Swati Agrawal

Manganese(II) and cobalt(II) complexes were synthesized with [N4] tetradentate macrocyclic ligand using different metal salts i.e. MnCl2, Mn(NO3)2, CoCl2 and Co(NCS)2. The ligand was prepared by condensation of glyoxal and carbahydrazide. All these were characterized by elemental analysis, molar conductance measurements, magnetic moment, IR, mass, electronic and EPR spectral studies. Elemental analysis indicates that the complexes have composition MLX2 where (X = Cl–, NO3 –,NCS–). All the complexes were found to be non-electrolytic in nature so can be formulated as [MLX2]. Infrared spectra of metal complexes suggest that the ligand behaves as tetradentate. On the basis of magnetic moment, electronic and EPR spectral data, all the metal complexes were found to be high spin with octahedral geometry.


2020 ◽  
Vol 32 (12) ◽  
pp. 3197-3202
Author(s):  
Rajeev Kumar ◽  
Sanjay Kumar ◽  
Madhu Bala

The complexes of Co(II), Ni(II), Zn(II) and Cd(II) with isatinylsemicarbazone (IstscabH) and isatinylthiosemicarbazone (IsttscabH) of composition ML2·2H2O [M = Co(II) or Ni(II) and LH = IstscabH or IsttscabH] and ML2 [M = Zn(II) or Cd(II) and LH = IstscabH or IsttscabH] have been synthesized and their antibacterial activity has been investigated. Their inclusion complexes with β-cyclodextrin (β-CD) having composition [ML2(β-CD)·2H2O] or M(C60H88N8O39S2)], [M = Co(II) or Ni(II) and LH = IstscabH or IsttscabH] and [ML2(β-CD) or M(C60H84N6O-37S2)], [M = Zn(II) or Cd(II) and LH = IstscabH or IsttscabH] have also been isolated in solid states. All the synthesized metal complexes have been characterized by analytical data, molar conductance, magnetic susceptibility, electronic and infrared spectral studies. The tetrahedral geometry for Zn(II) and Cd(II) and octahederal geometry for Co(II) and Ni(II) have been assigned on the basis of magnetic susceptibility, UV electronic transitions and IR spectral bands assignments. The structures are retained in inclusion products. A biological activity of Schiff bases, their metal complexes and inclusion products for bacteria Escherichia. coli, Bacillus subtilis and Staphylococcus aureus have been screened and activity explained.


2009 ◽  
Vol 74 (8-9) ◽  
pp. 927-938 ◽  
Author(s):  
Paulmony Tharmaraj ◽  
Deivasigamani Kodimunthiri ◽  
Clarence Sheela ◽  
Shanmuga Priya

A new series of Cu(II), Co(II) and Ni(II) complexes with the 1-(2- -hydroxyphenyl)-3-phenyl-2-propen-1-one, N2-[(3,5-dimethyl-1H-pyrazol-1- -yl)methyl]hydrazone ligand, C21H22N4O (LH), were synthesized by the reaction of 1-(2-hydroxyphenyl)-3-phenyl-2-propen-1-one, hydrazone with (3,5-dimethyl- 1H-pyrazol-1-yl)methanol and characterized. The nature of the bonding and geometry of the complexes were deduced from elemental analysis, IR, electronic and 1H-NMR spectroscopy, and magnetic susceptibility and conductivity measurements. The studies indicated square-planar, tetrahedral and octahedral geometry for the copper(II), cobalt(II) and nickel(II) complexes, respectively. The ESR spectra of the copper(II) complex in acetonitrile at 300 and 77 K were recorded and their salient features are reported. The electrochemical behavior of the copper (II) complex was studied by cyclic voltammetry. The antimicrobial activity of the ligand and its metal complexes were studied against the following strains of microorganism: Staphylococcus aureus, Salmonella enterica typhi, Escherichia coli and Bacillus subtilis by the well diffusion method. Metal complexes showed enhanced antimicrobial activity compared with that of the free ligand.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Sanjay Goel ◽  
Sulekh Chandra ◽  
Sudhanshu Dhar Dwivedi

Co(II) and Ni(II) complexes of general composition ML2X2(M = Co(II), Ni(II); X = Cl−,NO3 −) were synthesized by the condensation of metal salts with semicarbazone/thiosemicarbazone derived from 2-acetyl coumarone. The ligands and metal complexes were characterized by NMR, elemental analysis, molar conductance, magnetic susceptibility measurements, IR, and atomic absorption spectral studies. On the basis of electronic, molar conductance and infrared spectral studies, the complexes were found to have square planar geometry. The Schiff bases and their metal complexes were tested for their antibacterial and antioxidant activities.


2015 ◽  
Vol 12 (2) ◽  
pp. 350-361 ◽  
Author(s):  
Baghdad Science Journal

A new series of metal ions complexes of VO(II), Cr(III), Mn(II), Zn(II), Cd(II) and Ce(III) have been synthesized from the Schiff bases (4-chlorobenzylidene)-urea amine (L1) and (4-bromobenzylidene)-urea amine (L2). Structural features were obtained from their elemental microanalyses, magnetic susceptibility, molar conductance, FT-IR, UV–Vis, LC-Mass and 1HNMR spectral studies. The UV–Vis, magnetic susceptibility and molar conductance data of the complexes suggest a tetrahedral geometry around the central metal ion except, VOII complexes that has square pyramidal geometry, but CrIII and CeIII octahedral geometry. The biological activity for the ligand (L1) and its Vanadium and Cadmium complexes were studied. Structural geometries of compounds also were suggested in gas phase by using theoretical treatments, using Hyper Chem-6 program for the molecular mechanics and semi-empirical calculations. The heat of formation (?Hf ?) and binding energy (?Eb) in the temperature of 298K for the free ligand (L1) and their metal complexes were calculated by PM3 and ZINDO/I methods. The electrostatic potential of the free ligands were calculated to investigate the reactive sites of the molecules.Bacteriological evaluation of considerable number of these compounds were maintained using organisms Escherichia coli and Staphylococcus aureus,and they were found to exhibit the high effect of activity. This may be attributed to the impact of both the Schiff bases and the metal present in these complexes.


2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Sulekh Chandra ◽  
Shikha Parmar ◽  
Yatendra Kumar

A series of metal complexes of Zn(II) and Hg(II) having the general composition [where L = 2-formylpyridine thiosemicarbazone; M = Zn(II) and Hg(II); X = , and ] have been prepared and characterized by elemental chemical analysis, molar conductance, and spectral (IR and mass) studies. The IR spectral data suggests the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. On the basis of spectral studies, a tetrahedral geometry has been assigned for Zn(II) and Hg(II) complexes. The free ligand and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties.


Sign in / Sign up

Export Citation Format

Share Document