scholarly journals Synthesis, spectral studies and antibacterial activity of Cu(II), Co(II) and Ni(II) complexes of 1-(2-hydroxyphenyl)-3-phenyl-2-propen-1-one, N2-[(3,5-dimethyl-1H-pyrazol- -1-yl)methyl]hydrazone

2009 ◽  
Vol 74 (8-9) ◽  
pp. 927-938 ◽  
Author(s):  
Paulmony Tharmaraj ◽  
Deivasigamani Kodimunthiri ◽  
Clarence Sheela ◽  
Shanmuga Priya

A new series of Cu(II), Co(II) and Ni(II) complexes with the 1-(2- -hydroxyphenyl)-3-phenyl-2-propen-1-one, N2-[(3,5-dimethyl-1H-pyrazol-1- -yl)methyl]hydrazone ligand, C21H22N4O (LH), were synthesized by the reaction of 1-(2-hydroxyphenyl)-3-phenyl-2-propen-1-one, hydrazone with (3,5-dimethyl- 1H-pyrazol-1-yl)methanol and characterized. The nature of the bonding and geometry of the complexes were deduced from elemental analysis, IR, electronic and 1H-NMR spectroscopy, and magnetic susceptibility and conductivity measurements. The studies indicated square-planar, tetrahedral and octahedral geometry for the copper(II), cobalt(II) and nickel(II) complexes, respectively. The ESR spectra of the copper(II) complex in acetonitrile at 300 and 77 K were recorded and their salient features are reported. The electrochemical behavior of the copper (II) complex was studied by cyclic voltammetry. The antimicrobial activity of the ligand and its metal complexes were studied against the following strains of microorganism: Staphylococcus aureus, Salmonella enterica typhi, Escherichia coli and Bacillus subtilis by the well diffusion method. Metal complexes showed enhanced antimicrobial activity compared with that of the free ligand.

Author(s):  
VAIRALAKSHMI M ◽  
PRINCESS R ◽  
JOHNSON RAJA S

Objectives: The aim of our work was to synthesize novel mixed ligand-metal complexes and evaluation of antimicrobial, antioxidant assay, and analysis of catalytic oxidation of cyclohexane. Methods: The complexes were characterized by means of various physicochemical techniques such as elemental analysis, molar conductance, magnetic susceptibility, infrared (IR), electronic absorption, 1H NMR (proton magnetic resonance), and mass spectral studies. The antimicrobial screening study was done by disc diffusion method. The catalytic activity of the complexes was observed in the oxidation of cyclohexane using eco-friendly hydrogen peroxide as oxidant. Results: On comparing the 1H NMR and IR spectral data of free ligand and its complexes, it was found to be azomethine (CH=N) proton which is formed in the free ligand. During complexation, the azomethine proton is coordinated to the metal ion and the phenolic oxygen is coordinated to the metal ion by deprotonation. The analytical data and mass spectra of the ligand and the complexes confirm the stoichiometry of metal complexes as being of the (MLY)Cl type and the metal to ligand ratio is 1:1. The antimicrobial, antioxidant, and catalytic potential were evaluated and the result shows the better activity of the complexes than the ligand. Conclusion: It was found to be copper(II) and zinc(II) complexes which are effective against all the bacteria when compared to standard drug streptomycin. Copper(II) complex was found to be effective antibacterial agent against Aspergillus niger and Aspergillus flavus in comparison to the standard drug Nystatin. The zinc complex exhibited good catalytic activity.


2019 ◽  
Vol 31 (4) ◽  
pp. 780-784
Author(s):  
P. Manimaran ◽  
S. Balasubramaniyan

The metal complexes of Fe(III) and Cu(II) were prepared by using 2,4-dinitrophenyl hydrazine (DNPH) and thiocyanate (SCN) with stirrer refluxed for about 6 h. The prepared Fe(III) and Cu(II) complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility and electronic spectrum, FT-IR spectral studies. The result suggested the octahedral geometry for Fe(III) and Cu(II) complexes. Powder X-ray diffraction indicate the crystalline nature of the metal complexes. The antimicrobial activities of the Fe(III) and Cu(II) complexes were tested with various micro organisms by disc diffusion method. The antimicrobial results indicate that the metal complexes are highly active with compared to the free ligand. The in vitro antioxidant activity of the free ligand and its metal complexes was assayed by radical scavenging activity (DPPH). The result proposed that Fe (III) and Cu(II) complexes exhibited strong antioxidant activity than that of the ligand.


2011 ◽  
Vol 8 (3) ◽  
pp. 1258-1263 ◽  
Author(s):  
A. K. Mapari ◽  
M. S. Hate ◽  
K. V. Mangaonkar

The mixed ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) with Schiff basesN-(2-hydroxy-1-naphthylidene)-4-methylaniline (L1H) andN-(2-hydroxybenzylidene)-2,3-dimethylaniline (L2H) have been synthesized and characterized. The resulting complexes were characterized by elemental analysis, thermogravimetric analysis, magnetic moment measurements, conductivity measurements,1H NMR, IR, UV-visible and ESR spectral studies. The Schiff bases acts as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The complexes are non-electrolytic in DMSO. The presence of the two coordinated water molecules in these complexes was indicated by IR spectra and thermogravimetric analysis of the complexes. From the analytical and spectral data the stoichiometry of these complexes have been found to be [M(L1)(L2)(H2O)2] {where M = Co(II) , Ni(II), Cu(II) and Zn(II)}. It is found that Co(II), Ni(II), Cu(II) and Zn(II) complexes exhibited octahedral geometry. The antimicrobial activities of ligands and their mixed ligand complexes were screened by disc diffusion method. It is found that the metal complexes have higher antimicrobial activity than the free ligand.


2009 ◽  
Vol 74 (8-9) ◽  
pp. 907-915 ◽  
Author(s):  
Sulekh Chandra ◽  
Monika Tyagi ◽  
Moamen Refat

Mn(II) and Co(II) complexes having the general composition [M(L)2X2] (where L = 2-pyridinecarboxaldehyde thiosemicarbazone, M = Mn(II) and Co(II), X = Cl- and - NO3 ) were synthesized. All the metal complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, EPR, electronic spectral studies and thermogravimetric analysis (TG). Based on the spectral studies, an octahedral geometry was assigned for all the complexes. Thermal studies of the compounds suggest that the complexes are more stable than the free ligand. This fact was supported by the kinetic parameters calculated using the Horowitz-Metzger (H-M) and Coats-Redfern (C-R) equations. The antibacterial properties of the ligand and its metal complexes were also examined and it was observed that the complexes are more potent bactericides than the free ligand.


Author(s):  
Musarat Farjana Yesmin ◽  
Farzana Khanm Camellia ◽  
Modina Bashar ◽  
Md. Sajjad Hossain ◽  
Saiyad Nasira ◽  
...  

New complexes of Cu (II) and Ni (II) of the Schiff Base, 2-(((2-((4-hydroxybenzylidene) amino)ethyl)imino)methyl) phenol were synthesized and characterized by analytical and  physico-chemical techniques including magnetic susceptibility, conductivity measurements, electronic and IR spectral studies. The infrared spectral studies revealed the tetra-dentate nature of the Schiff base in the complexes. On the basis of all characterizations, square- planar geometry has proposed for all the obtained complexes. The complexes showed moderate antimicrobial activity against Escherichia coli and Staphylococcus aureus.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
C. Anitha ◽  
S. Sumathi ◽  
P. Tharmaraj ◽  
C. D. Sheela

A series of metal(II) complexes ML where M = VO(II), Co(II), Ni(II), Cu(II), and Zn(II) have been synthesized from azo Schiff base ligand (N′E)-N′-(5-((4-chlorophenyl)diazenyl)-2-hydroxybenzylidene)-2-hydroxybenzohydrazide and characterized on the basis of elemental analyses, electronic, IR, and 1H NMR spectra, magnetic susceptibility and also by aid of scanning electron microscopy (SEM), X-ray powder diffraction, fluorescence spectral studies, and molar conductivity measurements. Conductivity measurements reveal that the complexes are nonelectrolytes. Spectroscopy and other analytical studies reveal distorted square planar geometry for copper, square-pyramidal geometry for oxovanadium, and tetrahedral geometry for other complexes. Redox behavior of the copper(II) complex has been studied with cyclic voltammetry, and the biological activities of the ligand and metal complexes have been studied against several microorganisms by the well diffusion method. All synthesized compounds can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligand was measured and found to be higher than that of urea and KDP. The SEM image of the copper(II) complex implies that the size of the particles is 50 nm.


2019 ◽  
Vol 31 (8) ◽  
pp. 1774-1778
Author(s):  
Monika Tyagi ◽  
Sulekh Chandra

Complexes of chlorides and acetates of Mn(II) and Co(II) with ligand, 3-[mercapto-[1,3,4]thiadiazol-2-ylimino)-methyl]-benzene-1,2-diol has been synthesized and characterized. The metal complexes so formed were characterized by molar conductance, elemental analysis, mass, EPR, IR and electronic spectral studies. Geometry of the ligand and its metal complexes was optimized by (B3LYP) functional with 6-31G (d,p) basis sets method of the Gaussian 09 W. All the metal complexes were found to be non-electrolytes. Metal complexes are represented as [M(L)2X2] [where L = Schiffs base ligand, M = Mn(II), Co(II) and X = Cl–, CH3COO–]. Octahedral geometry for Mn(II) and Co(II) complexes was determined by means of spectral studies and molecular modelling. Ligand and its metal complexes were screened against three bacteria- P. aeruginosa, S. pyogens and B. subtilis using well diffusion method. Complexes are found to be more potent as compare to the ligand.


2012 ◽  
Vol 9 (4) ◽  
pp. 2516-2523 ◽  
Author(s):  
Matangi Sunitha ◽  
Pragathi Jogi ◽  
Bathini Ushaiah ◽  
C. Gyana Kumari

Metal complexes of Ni(II), Co(II), Cu(II), Mn(II) and Zn(II) VO(IV) with a Schiff base derived from 3-Ethoxy Salicylaldehyde and 2-(2-amino-phenyl)1-H-Benzimidazol(2-[(Z)-{(2-(1H-benzimidazole-2yl)phenyl] imino} methyl]-6-ethoxy phenol-BMEP) were synthesized successfully. The resulting complexes were characterized by elemental analysis, magnetic moment measurements, conductivity measurements, IR, UV-VIS, 1H NMR, mass spectra and ESR spectral studies. According to these data, we propose an octahedral geometry to all the metal complexes. Antimicrobial activity of the ligand and its metal complexes were studied against two gram negative bacteria:E. coli, Pseudomonas flourescenceand two gram positive bacteria:Bacillus subitilis, Staphylococcus aureus. The activity data show that the metal complexes are more potent than the free ligand.


2021 ◽  
Vol 12 (2) ◽  
pp. 96-103
Author(s):  
E.T. Omotade ◽  
A.P. Oviawe

The mixed ligand complexes involving Fe(II), Co(II) and Ni(II) ions, Schiff base 4 phenylpyrazal-5-one (L1) and L-lysine (Lys) were synthesized. The complexes were characterized on the basis of their elemental analysis, conductivity measurements, FT-IR, MS,1H-NMR and 13C-NMR spectral studies. All the synthesized complexes were subjected to simultaneous thermogravimetric analysis to study their decomposition mechanism and thermal stability. The mixed ligand complexes were screened against some strains of bacteria and fungi to study their antimicrobial activity. The complexes were found to be non-electrolytes and possessed octahedral geometry. The results showed that the metal complexes possessed better antimicrobial activity than the free ligands.


Author(s):  
Daisy Selasteen F ◽  
Alfred Cecil Raj S ◽  
Alagappa Moses A

Objective: The aim of this study is to investigate the growth, structure, spectral, solubility and biological activity of sodium cadmium oxalate dehydrate (NaCdOx) and cadmium oxalate trihydrate (CdOx) crystals prepared by a single diffusion method in the silica gel medium.Methods: The present crystals were grown using single diffusion methods and tested for XRD, UV absorption (190 to 1100 mm) and solubility (distilled water at 20-29 °C) studies. The antimicrobial efficacy of the grown samples at various concentrations (25, 50, 75 and 100 μg/ml) was studied against Streptococcus, (G+Ve), Pseudomonas aeruginosa (G-Ve) and Candida albicans (antifungal). The cytotoxicity evolution was carried out against human cervical cancer cell line (HeLa) using MTT assays.Results: The existing single crystals were successfully grown by silica gel technique. The solubility of sodium cadmium oxalate dehydrate (NaCdOx) was moderately good in deionized warm water. The FTIR spectral studies confirmed the chelating bands of the present samples and UV spectra showed the better the optical conductivity of as-grown crystals. The complexes showed good antimicrobial activity against all tested microbial strains and they exhibited a decrease in cytotoxicity activity.Conclusion: The gel method was suitable to grow metal complexes of legend crystals. The modification of structural properties of cadmium oxalate trihydrate (CdOx) by sodium doping was much improved the solubility, anticancer, antimicrobial activity and polarization by the high optical conductivity of sodium cadmium oxalate dehydrate (NaCdOx) compound. Hence sodium cadmium oxalate dehydrate (NaCdOx) might be a candidate for biomedical applications. 


Sign in / Sign up

Export Citation Format

Share Document