scholarly journals The remediation of chlorpyrifos-contaminated soil by immobilized white-rot fungi

2020 ◽  
Vol 85 (7) ◽  
pp. 857-868
Author(s):  
Xin Wang ◽  
Lei Song ◽  
Zhaoxing Li ◽  
Zijun Ni ◽  
Jia Bao ◽  
...  

This research focused on the degradation of chlorpyrifos via immobilized white rot fungi in soil, with the aim to select excellent degrading strains and an optimal carrier of white rot fungi. Immobilization of white rot fungi was assessed on corn stover, wheat straw, peanut shells, wood chip, and corn cobs. Phlebia sp., Lenzites betulinus and Irpex lacteus were grown in defined nutrient media for the remediation of pesticide-contaminated soils. The carrier of the biomass was determined by observing the growth of white rot fungi. The results showed that corn stover and wheat straw are suitable carriers of the immobilized white rot fungi and that Phlebia sp. and Lenzites betulinus have a positive effect on the degradation of chlorpyrifos. At 30?C and neutral pH, the degradation rate of chlorpyrifos was 74.35 %, Phlebia sp. being immobilized by corn stover in 7 days, which was the best result compared to other combinations of strains and carriers. The orthogonal experiment showed that the pH value and temperature affected the pollutant degradability more than the initial concentration and the biomass dosage.

2021 ◽  
Author(s):  
Aleksandar Knežević ◽  
Ivana Đokić ◽  
Tomislav Tosti ◽  
Slađana Popović ◽  
Dušanka Milojković-Opsenica ◽  
...  

Abstract The aim of the study was comparative analysis of degradation of wheat straw lignin by white-rot fungi and its implications on the efficiency of enzymatic hydrolysis of holocellulose. Cyclocybe cylindracea, Ganoderma resinaceum, Irpex lacteus, Pleurotus ostreatus and Trametes versicolor were the species studied. Peroxidases were predominantly responsible for lignin degradation even though high laccase activities were detected, except in the case of Irpex lacteus where laccase activity was not detected. Studied fungal species showed various ability to degrade lignin in wheat straw which further affected release of reducing sugars during enzymatic saccharification. The highest rate of lignin degradation was noticed in sample pretreated with Irpex lacteus (50.9 ± 4.1%). Among all tested species only Ganoderma resinaceum was suitable lignin degrader with the 2-fold higher hydrolysis yield (51.1 ± 4.7%) than in the control, and could have significant biotechnological application due to lower cellulose loss. A key mechanism of carbohydrate component convertibility enhancement was lignin removal in the biomass. Long time consumption, the low sugar yields and unpredictable fungal response still remain the challenge of the fungal pretreatment process.


2013 ◽  
Vol 6 (1) ◽  
pp. 115 ◽  
Author(s):  
Davinia Salvachúa ◽  
Angel T Martínez ◽  
Ming Tien ◽  
María F López-Lucendo ◽  
Francisco García ◽  
...  

Bioethanol ◽  
2016 ◽  
Vol 2 (1) ◽  
Author(s):  
María García-Torreiro ◽  
Miguel Álvarez Pallín ◽  
María López-Abelairas ◽  
Thelmo A. Lu-Chau ◽  
Juan M. Lema

AbstractBioconversion of lignocellulosic materials into ethanol requires an intermediate pretreatment step for conditioning biomass. Sugar yields from wheat straw were previously improved by the addition of a mild alkali pretreatment step before bioconversion by the white-rot fungus Irpex lacteus. In this work, an alternative alkaline treatment, which significantly reduces water consumption, was implemented and optimized. Sugar recovery increased 117% with respect to the previously developed alkaline wash process at optimal process conditions (30°C, 30 minutes and 35.7% (w/w) of NaOH). In order to further reduce operational costs, a system for alkali recycling was implemented. This resulted in the treatment of 150% more wheat straw using the same amount of NaOH. Finally, enzymatic hydrolysis was optimized and resulted in a reduction of enzyme dose of 33%.


2000 ◽  
Vol 2000 ◽  
pp. 59-59
Author(s):  
Y Rouzbehan ◽  
H. Fazaeli ◽  
A. Kiani

In Iran, wheat straw which is produced in huge amounts has been used in animal feed. However, the use of straw as animal feed is limited by its low nutritional value and its low nitrogen content. Various chemical delignification methods to improve the digestibility of straw have extensively investigated (Sundstol and Owen, 1984). Biological methods of treating straw using fungi such as white-rot-fungi have also been reported (Zadrazil, 1984). The solid state fermentation (SSF) of wheat straw with white-rot fungi is a complex process which is influenced by factors such as the species of fungus, substrate, temperature and moisture (Zadrazil, 1984). The objective of this study was to investigate the effect of pre-treating the straw with urea and incubation with two species of Pleurotus fungi on the chemical composition and digestibility of wheat straw.


2007 ◽  
Vol 2007 ◽  
pp. 197-197
Author(s):  
Hassan Fazaeli ◽  
Seyed Ahmad Mirhadi

Biological de-lignification of straw by white-rot fungi seems a promising way of improving its nutritive value. The bio-conversion of lignocellulosic materials is circumscribed to the group of white-rot fungi, of which some species of Pleurotus are capable of producing upgraded spent-straws as ruminant feed (Fazaeli et al., 2004). Treating of cereal straw with white-rot fungi as animal feed was studied by several workers (Gupta et al., 1993; Zadrazil, 1997). However, most of the trials were conducted at in vitro stage and used cell wall degradation and in vitro digestibility as an index to evaluate the biological treatments. This experiment was conducted to study the effect of fungal treatment on the voluntary intake, in vivo digestibility and nutritive value index of wheat straw obtained from short-term and long-term solid state fermentation (SSF).


2005 ◽  
Vol 2005 ◽  
pp. 137-137
Author(s):  
E. M. Hodgson ◽  
M. D. Hale ◽  
H. M. Omed

Straw constitutes a vast, valuable, and under utilised agricultural by-product, which has a great potential for utilisation as an animal feedstuff. However, due to the way in which it is constructed, the digestible sugars, cellulose and hemicelluloses, are tightly chemically bound by heavily lignified cell walls which provide the wheat plant stem with its strength and structure, but in doing so greatly inhibit the digestibility and nutritive value of the material to ruminant animals. Therefore, the utilisation of this resource as an animal feed can only be realised effectively, if the nutritional and digestibility values of the material can be improved by the innovation and successful application of an effective treatment method, be that physical, chemical or biological. Previously devised methods of upgrading the digestibility and nutritive value of forages, with the possible exception of urea treatment, have proven either insufficient, environmentally unsound, or economically infeasible to those concerned, particularly those in developing world. Therefore, there is a distinct need to develop techniques which can avoid these pitfalls and still yield the desired results in the context of animal nutrition. Previous research has indicated that members of the genus Pleurotus white rot fungi, have great potential for application in the biological upgrading of wheat straw. Therefore, the objective of this work was to investigate biological techniques, using 3 strains of Pleurotus fungi which may have the potential to be utilised in the biological upgrading of wheat straw.


2018 ◽  
Vol 242 ◽  
pp. 135-143 ◽  
Author(s):  
Nazri Nayan ◽  
Anton S.M. Sonnenberg ◽  
Wouter H. Hendriks ◽  
John W. Cone

2010 ◽  
Vol 101 (15) ◽  
pp. 6045-6050 ◽  
Author(s):  
Albino A. Dias ◽  
Gil S. Freitas ◽  
Guilhermina S.M. Marques ◽  
Ana Sampaio ◽  
Irene S. Fraga ◽  
...  

Holzforschung ◽  
2008 ◽  
Vol 62 (6) ◽  
Author(s):  
Jonathan S. Schilling ◽  
Kaitlyn M. Bissonnette

AbstractWood-degrading fungi commonly grow in contact with calcium (Ca)-containing building materials and may import Ca and iron (Fe) from soil into forest woody debris. For brown rot fungi, imported Ca2+may neutralize oxalate, while Fe3+may facilitate Fenton-based degradation mechanisms. We previously demonstrated, in two independent trials, that degradation of spruce by wood-degrading fungi was not promoted when Ca or Fe were imported from gypsum or metallic Fe, respectively. Here, we tested pine wood with lower endogenous Ca than the spruce blocks used in prior experiments, and included a pure gypsum treatment and one amended with 1% with FeSO4. Electron microscopy with microanalysis verified that brown rot fungiSerpula himantioidesandGloeophyllum trabeumand the white rot fungusIrpex lacteusgrew on gypsum and produced iron-free Ca-oxalate crystals away from the gypsum surface. Wood cation analysis verified significant Fe import by both brown rot isolates in Fe-containing treatments. Wood degradation was highest in Fe-gypsum-containing treatments for all three fungi, although only wood degraded byI. lacteushad significant Ca import. We suggest that Fe impurities may not exacerbate brown rot, and that both brown and white rot fungi may utilize Ca-containing materials.


2016 ◽  
Vol 221 ◽  
pp. 147-156 ◽  
Author(s):  
Deli Nazmín Tirado-González ◽  
Juan Jáuregui-Rincón ◽  
Gustavo G. Tirado-Estrada ◽  
Pedro Arturo Martínez-Hernández ◽  
Fidel Guevara-Lara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document