scholarly journals Co oxidation over alumina monolith impregnated with oxides of copper and manganese

Author(s):  
Thien Pham ◽  
Viet Bui ◽  
Thi Phan ◽  
Ha Than

In this work, preparation and performance of catalysts as using a simple method and highly efficient heterogeneous nanocatalyst is described. The main advantages of the reaction are high yields for the oxidation of CO at low temperature. The catalysts based-on oxides of copper and manganese supported on alumina monoliths were prepared by the different methods: plasma corona discharge and wet impregnation. Structure and physical properties of catalysts were characterized by FT-IR, XRD, TEM, EDX and TG/DTA. The results showed that the using of plasma corona discharge at atmospheric pressure in the preparation process of catalyst gives a smaller particle size, uniform dispersion when compared with the catalysts prepared by the wet impregnation methods. The catalytic activities of these catalysts were investigated for complete oxidation of carbon monoxide (3000 ppm) to carbon dioxide in the air at the atmospheric pressure. On a single oxide catalyst, 10CuO/monolith was better than 10MnO2/monolith in the same experimental condition. With multi-oxide catalysts, all catalyst samples are more active than a single-oxide catalyst in the same impregnated content. In particular, the catalyst is prepared by plasma corona discharge indicate the best oxidation capacity of carbon monoxide (CO).

2020 ◽  
Vol 3 (1) ◽  
pp. 19-24
Author(s):  
Valentinus Galih Vidia Putra ◽  
Annisa Diyan Fitri ◽  
Ichsan Purnama ◽  
Juliany Ningsih Mohamad

Abstrak Pada penelitian ini telah dikembangkan sebuah produk pakaian anti radiasi unisex sports wear menggunakan teknologi plasma pijar korona elektroda tip-plane. Plasma pijar korona dibangkitkan dengan listrik tegangan tinggi serta menggunakan elektroda asimetri  (lancip dan plat).Pembuatan pakaian anti radiasi menggunakan bahan rajut yang telah diplasma sertadilapisi dengan tinta konduktif. Hasil studi memperlihatkan bahwa metode pembuatan pakaian dengan plasma pijar korona telah berhasil mengurangi radiasi gelombang elektromagnetik. Kata kunci: plasma pijar, pakaian unisex sportswear, elektroda tip-plane, anti radiasi Abstract This paper describes the making of an anti-radiation smartphone unisex sportswear. The anti-radiation patch was developed by first modifiying the surface of the textile using atmospheric pressure plasma technology. The plasma corona discharge is generated by using a high voltage electricity withasymmetrical electrodes (tip and plane). The treated patch was than coated with graphite based conductive ink. The result of thisresearchindicates that an anti-radiation clothe patch was succesfully shield an electromagnetic radiation from a smartphone. Keywords: plasma discharge, unisex sportswear, tip-plane electrode, electromagnetic shielding


2021 ◽  
Vol 11 (1) ◽  
pp. 59
Author(s):  
Valentinus Galih Vidia Putra ◽  
Irwan Irwan ◽  
Ichsan Purnama ◽  
Juliany Ningsih Mohamad ◽  
Yusril Yusuf

<p>In this research, Carbon black particles were applied on the woven fabric by the knife coating technique and pretreatment using plasma corona discharge to build-up conductive cotton-polyester (CVC 50%) fabric electromagnetic shielding material. This paper describes the making of anti-radiation weaving fabric using plasma technology. The anti-radiation patch was developed by first modifying the textile fabric's surface using atmospheric pressure plasma technology using tip-cylinder electrode configuration. The plasma corona discharge was generated using high voltage electricity with asymmetrical electrodes (tip and cylinder). The treated weaving fabric using plasma was then coated with carbon black ink. This research indicates that an anti-radiation weaving fabric was successfully shielded electromagnetic radiation from an electronic device.</p>


1966 ◽  
Vol 16 (01/02) ◽  
pp. 198-206 ◽  
Author(s):  
W Straughn ◽  
R. H Wagner

SummaryA simple new procedure is reported for the isolation of canine, bovine, porcine, and human fibrinogen. Two molar β-alanine is used to precipitate fibrinogen from barium sulfate adsorbed plasma. The procedure is characterized by dependability and high yields. The material is 95% to 98% clottable protein but still contains impurities such as plasminogen and fibrin-stabilizing factor. Plasminogen may be removed by adsorption with charcoal. The fibrinogen preparations exhibit marked stability to freezing, lyophilization, and dialysis. Epsilon-amino-n-caproic acid and gamma-aminobutyric acid which were also studied have the property of precipitating proteins from plasma but lack the specificity for fibrinogen found with β-alanine.


Author(s):  
Kenneth A. Cornell ◽  
Amanda White ◽  
Adam Croteau ◽  
Jessica Carlson ◽  
Zeke Kennedy ◽  
...  

1983 ◽  
Vol 30 ◽  
Author(s):  
F. W. Giacobbe ◽  
D. W. Schmerling

ABSTRACTA unique and efficient plasma jet reactor has been developed and used to study the high temperature production of carbon monoxide from a reaction between powdered carbon and a pure carbon dioxide plasma. The plasma jet reactor was designed to allow the injection of powdered carbon above the arc discharge region rather than into the plasma flame below the arc discharge region. High yields of carbon monoxide, produced at relatively high efficiencies, were a direct result of this technique. The plasma jet was also designed to enable rapid changing and testing of various anode insertsAverage yields of carbon monoxide in the product gases were as high as 80–87% in selected experimental trials. Carbon monoxide was produced at rates exceeding 15,000 1/hr (at STP) with a power expenditure of 52 Kw.


Sign in / Sign up

Export Citation Format

Share Document