scholarly journals Spark plasma sintering of hydrothermally synthesized bismuth ferrite

2016 ◽  
Vol 10 (4) ◽  
pp. 257-264 ◽  
Author(s):  
Zorica Brankovic ◽  
Danijela Lukovic-Golic ◽  
Aleksandar Radojkovic ◽  
Jovana Cirkovic ◽  
Damir Pajic ◽  
...  

Bismuth ferrite, BiFeO3 (BFO), powder was synthesized by hydrothermal method from Bi(NO3)3?5H2O and Fe(NO3)3?9H2O as precursors. The synthesized powder was further sintered using spark plasma sintering (SPS). The sintering conditions were optimized in order to achieve high density, minimal amount of secondary phases and improved ferroelectric andmagnetic properties. The optimal structure and properties were achieved after spark plasma sintering at 630?C for 20min, under uniaxial pressure of 90MPa. The composition, microstructure, ferroelectric and magnetic properties of the SPS samples were characterized and compared to those of conventionally sintered ceramics obtained from the same powder. Although the samples sintered using conventional method showed slightly lower amount of secondary phases, the spark plasma sintered samples exhibited favourable microstructure and better ferroelectric properties.

2014 ◽  
Vol 975 ◽  
pp. 257-262
Author(s):  
Ricardo A.M. Gotardo ◽  
Diogo Montanher ◽  
Otávio A. Protzek ◽  
Luiz F. Cótica ◽  
Ivair A. Santos ◽  
...  

In this work, high dense, single phase ceramics of the 0.3BiFeO3 0.7BaTiO3 multiferroic solid solution were prepared by spark plasma sintering. The structural, microstructural, multiferroic and piezoelectric properties were investigated. The samples presented good magnetic and ferroelectric properties, Pr = 8.3 μC/cm2 and Mr = 0.03 emu/g, with low dielectric AC losses below the ferroelectric transition temperature. The obtained piezoelectric coefficients were determined as d31 = -8.1 pm/V and d33 = 13.5 pm/V.


2008 ◽  
Vol 368-372 ◽  
pp. 601-603
Author(s):  
Xi Wei Qi ◽  
Ji Zhou ◽  
Zhen Xing Yue ◽  
Ming Ya Li ◽  
Xiu Mei Han

Dense NiCuZn ferrites consisting of fine grains were prepared by spark plasma sintering (SPS) at 750°C for 3 min under a uniaxial pressure of 15 MPa. The powders were densified to >95% of theoretical density by the SPS process, and the average grain size of the prepared NiCuZn ferrite was < 1 /m. The saturation magnetization of prepared specimens (without further annealing treatment) was approximate 50.54 emu/g, which was slightly smaller than that of 52.21 emu/g for specimens prepared by conventional sintering at 980°C for 4 h. Phase identifications indicated that prepared NiCuZn ferrite existed impurity phase (Cu2O), and Cu2O would gradually transform to CuO when annealing temperature increased.


2000 ◽  
Vol 643 ◽  
Author(s):  
E. Fleury ◽  
J.H. Lee ◽  
S.H. Kim ◽  
G.S. Song ◽  
J.S. Kim ◽  
...  

AbstractSpark plasma sintering method was applied to Al-Cu-Fe and Al-Si-Cu-Fe gas-atomized powders to prepare almost pore-free cylindrical specimens with icosahedral and 1/1 cubic approximant phases, respectively. This investigation has revealed that a high density could be obtained despite the short period and low temperature imposed during spark plasma sintering. In comparison to hot press technique, these conditions are favorable since they limit the formation of secondary phases and avoid exaggerated grain growth. The Vickers microhardness and fracture toughness of these two alloy systems were found to be larger than those obtained from cast and hot pressed samples, which could be attributed to a strong bonding between powder particles and the small-grained microstructure of the bulk SPS quasicrystalline specimens.


2017 ◽  
Vol 17 (2) ◽  
pp. 93-103
Author(s):  
M. Tenerowicz-Zaba ◽  
M. Kupkova ◽  
M. Kabatova ◽  
E. Dudrova ◽  
M. Dzupon ◽  
...  

Abstract The aim of the study was to investigate Spark Plasma Sintering (SPS) of 1-3%Mn steels and compare the resultant microstructures, strengths and failure mechanisms with those of conventionally sintered materials. SPS was performed in a vacuum of 5 Pa at 1000°C for 15min under a uniaxial pressure of 20 MPa. The heating rate of 100°C/min was applied. For conventional processing, mixtures of powders were prepared in a Turbula mixer for 30 minutes. Samples were single pressed at 660 MPa, according to PN-EN ISO 2740 standard. Sintering of compacts was carried out in a laboratory tube furnace at 1120°C and 1250°C for 60 minutes in a mixture of 95%N2-5%H2. Heating and cooling rates were 75C°/min and 60°C/min, respectively. The density of SPS samples was higher (up to 7.37 g/cm3) than those after conventional sintering (up to 6.7 g/cm3). Yield strengths of SPS samples were in the range 920-1220 MPa, compared to the maximum of 602 MPa for conventionally sintered Fe-3%Mn-0.8%C. Transverse rupture strengths were the same for this alloy, 1234 MPa, but reached 1473 MPa for SPS 2Mn variant. Interfaces in SPS samples were significantly less contaminated with oxides, which is the result of a more favorable microclimate and pressure acting during SPS. These preliminary results indicate that further research on the SPS of Mn steels is warranted.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 800
Author(s):  
Pavel Novák ◽  
Zdeněk Barták ◽  
Kateřina Nová ◽  
Filip Průša

This paper describes the structure and properties of an innovative Fe-Al-Si alloy with a reduced amount of silicon (5 wt. %) in order to avoid excessive brittleness. The alloy was produced by a combination of mechanical alloying and spark plasma sintering. Nickel and titanium were independently tested as the alloying elements for this alloy. It was found that wear resistance, which reached values comparable with tool steels, could be further improved by the addition of nickel. Nickel also improved the high-temperature oxidation behavior, because it lowers the liability of the oxide layers to spallation. Both nickel and titanium increased the hardness of the alloy. Titanium negatively influenced oxidation behavior and wear resistance because of the presence of titanium dioxide in the oxide layer and the brittle silicides that caused chipping wear, respectively.


2021 ◽  
pp. 158-161
Author(s):  
E.V. Ageeva ◽  
B.N. Sabel’nikov

The results of experimental studies of a KNT16 tungsten-free hard alloy sintered from electroerosive powders obtained in ethyl alcohol are presented. It is shown that the use of the spark plasma sintering method to produce products from powder obtained by electroerosive dispersion of the alloy KNT16 will ensure high performance of parts due to the uniformity of the surface, favorable structure and low porosity of the product.


Sign in / Sign up

Export Citation Format

Share Document