scholarly journals Photometric analysis of newly discovered open clusters SAI 24 and SAI 94 based on PPMXL catalogue

2019 ◽  
pp. 45-53
Author(s):  
W.H. Elsanhoury ◽  
Magdy Amin

In our present work, we studied the photometric characteristics (core radius, limiting radius, reddening... etc.) as well as their dynamical state of the two newly discovered open clusters, SAI 24 and SAI 94. We investigated their photometric properties in the J, H, and Ks bands with the PPMXL catalogue. A method of separating open cluster stars from those belonging to the stellar background has been employed. The results of our calculations indicate that the numbers of probable members in SAI 24 and SAI 94 are 202 and 199, respectively. We have estimated the cluster center for SAI 24, i.e. ?2000 = 02h 59m 26 .s36 and ?2000 = 60? 33' 02.''50 and for SAI 94 is ?2000 = 08h 10m 16 .s36, ?2000 = ?46? 17' 07.''91. The core radii rcore for SAI 24 and SAI 94 are found to be (1.92 ? 0.38) arcmin and (1.22 ? 0.10) arcmin, respectively and in the same manner the limiting radii rlim are about (2.45 ? 0.64) and (3.07 ? 0.57) arcmin. From the color-magnitude diagram, in view of the approximate logarithmic ages for SAI 24 and SAI 94 of 7.20 ? 0.20 and 9.10 ? 0.05, their distances are estimated to be (930 ? 30) pc and (3515 ? 60) pc, respectively. Also, we have calculated their projected distances (X? and Y?) to the Galactic plane and the projected distance Z? from the Galactic plane. The luminosity and mass functions of SAI 24 and SAI 94 clusters were outlined; accordingly, the masses were calculated to be (285 ? 17) M? and (317 ? 18) M?, respectively. Finally, we concluded that these two clusters are dynamically relaxed according to our estimation of their dynamical evolution parameter ? as a function of their crossing time Tcross. The evaporation time ?ev as a function of their relaxation time Trelax is about 6.18 Myr and 25.38 Myr for SAI 24 and SAI 94, respectively.

2019 ◽  
Vol 624 ◽  
pp. A26 ◽  
Author(s):  
Souradeep Bhattacharya ◽  
Kaushar Vaidya ◽  
W. P. Chen ◽  
Giacomo Beccari

Context. Blue straggler stars (BSSs) are observed in Galactic globular clusters and old open clusters. The radial distribution of BSSs has been used to diagnose the dynamical evolution of globular clusters. For the first time, with a reliable sample of BSSs identified with Gaia DR2, we conduct such an analysis for an open cluster. Aims. We aim to identify members, including BSSs, of the oldest known Galactic open cluster Berkeley 17 with the Gaia DR2 proper motions and parallaxes. We study the radial distribution of the BSS population to understand the dynamical evolution of the cluster. Methods. We selected cluster members to populate the colour magnitude diagram in the Gaia filters. Cluster parameters are derived using the brightest members. The BSSs and giant branch stars are identified, and their radial distributions are compared. The segregation of BSSs is also evaluated with respect to the giant branch stars using the minimum spanning tree (MST) analysis. Results. We determine Berkeley 17 to be at 3138.6−352.9+285.5 pc. We find 23 BSS cluster members, only two of which were previously identified. We find a bimodal radial distribution of BSSs supported by findings from the MST method. Conclusions. The bimodal radial distribution of BSSs in Berkeley 17 indicates that they have just started to sink towards the cluster centre, placing Berkeley 17 with globular clusters of intermediate dynamical age. This is the first such determination for an open cluster.


2018 ◽  
Vol 618 ◽  
pp. A93 ◽  
Author(s):  
T. Cantat-Gaudin ◽  
C. Jordi ◽  
A. Vallenari ◽  
A. Bragaglia ◽  
L. Balaguer-Núñez ◽  
...  

Context. Open clusters are convenient probes of the structure and history of the Galactic disk. They are also fundamental to stellar evolution studies. The second Gaia data release contains precise astrometry at the submilliarcsecond level and homogeneous photometry at the mmag level, that can be used to characterise a large number of clusters over the entire sky. Aims. In this study we aim to establish a list of members and derive mean parameters, in particular distances, for as many clusters as possible, making use of Gaia data alone. Methods. We compiled a list of thousands of known or putative clusters from the literature. We then applied an unsupervised membership assignment code, UPMASK, to the Gaia DR2 data contained within the fields of those clusters. Results. We obtained a list of members and cluster parameters for 1229 clusters. As expected, the youngest clusters are seen to be tightly distributed near the Galactic plane and to trace the spiral arms of the Milky Way, while older objects are more uniformly distributed, deviate further from the plane, and tend to be located at larger Galactocentric distances. Thanks to the quality of Gaia DR2 astrometry, the fully homogeneous parameters derived in this study are the most precise to date. Furthermore, we report on the serendipitous discovery of 60 new open clusters in the fields analysed during this study.


2009 ◽  
Vol 5 (S266) ◽  
pp. 487-490
Author(s):  
D. B. Pavani ◽  
L. O. Kerber ◽  
E. Bica ◽  
W. J. Maciel

AbstractOpen cluster remnants (OCRs) are fundamental objects to investigate open cluster dissolution processes (e.g., Bica et al. 2001; Carraro 2002; Pavani et al. 2003; Carraro et al. 2007; Pavani & Bica 2007). They are defined as poorly populated concentrations of stars, with enough members to show evolutionary sequences in colour–magnitude diagrams (CMDs) as a result of the dynamical evolution of an initially more massive physical system. An OCR is intrinsically poorly populated, which makes its differentiation from field-star fluctuations difficult. Among the possible approaches to establish the nature of OCRs, we adopted CMD analysis combined with a robust statistical tool applied to 2mass data. In addition, photometry is the main information source available for possible OCRs (POCRs). We developed a statistical diagnostic tool to analyse the CMDs of POCRs and verify them as physical systems, explore membership probabilityies taking into account field contamination and derive age, distance and reddening values in a self-consistent way. We present the results of our analysis of 88 POCRs that are part of a larger sample that is widely distributed across the sky, with a significant density contrast of bright stars compared to the Galactic field. The 88 objects are projected onto low-density Galactic fields, at relatively high latitudes (|b| > 15°). Studies of larger POCR samples will provide a better understanding of OCR properties and constraints for theoretical models, including new insights into the evolution of open clusters and their dissolution rates. The results of this ongoing survey will provide a general picture of these fossil stellar systems and their connection to Galactic-disk evolution.


2019 ◽  
Vol 490 (2) ◽  
pp. 1821-1842 ◽  
Author(s):  
L Casamiquela ◽  
S Blanco-Cuaresma ◽  
R Carrera ◽  
L Balaguer-Núñez ◽  
C Jordi ◽  
...  

ABSTRACT The study of open-cluster chemical abundances provides insights on stellar nucleosynthesis processes and on Galactic chemo-dynamical evolution. In this paper we present an extended abundance analysis of 10 species (Fe, Ni, Cr, V, Sc, Si, Ca, Ti, Mg, O) for red giant stars in 18 OCCASO clusters. This represents a homogeneous sample regarding the instrument features, method, line list and solar abundances from confirmed member stars. We perform an extensive comparison with previous results in the literature, and in particular with the Gaia FGK Benchmark stars Arcturus and $\mu$-Leo. We investigate the dependence of [X/Fe] with metallicity, Galactocentric radius (6.5 kpc < RGC < 11 kpc), age (0.3 Gyr < Age < 10 Gyr), and height above the plane (|z| < 1000 pc). We discuss the observational results in the chemo-dynamical framework, and the radial migration impact when comparing with chemical evolution models. We also use APOGEE DR14 data to investigate the differences between the abundance trends in RGC and |z| obtained for clusters and for field stars.


2019 ◽  
Vol 491 (2) ◽  
pp. 2129-2136 ◽  
Author(s):  
M de Juan Ovelar ◽  
S Gossage ◽  
S Kamann ◽  
N Bastian ◽  
C Usher ◽  
...  

ABSTRACT We investigate the morphology of the colour–magnitude diagram (CMD) of the open cluster NGC 2509 in comparison with other Galactic open clusters of similar age using Gaia photometry. At ${\sim}900\,\rm {Myr}$ Galactic open clusters in our sample all show an extended main sequence turnoff (eMSTO) with the exception of NGC 2509, which presents an exceptionally narrow CMD. Our analysis of the Gaia data rules out differential extinction, stellar density, and binaries as a cause for the singular MSTO morphology in this cluster. We interpret this feature as a consequence of the stellar rotation distribution within the cluster and present the analysis with mesa Isochrones and Stellar Tracks (MIST) stellar evolution models that include the effect of stellar rotation on which we based our conclusion. In particular, these models point to an unusually narrow range of stellar rotation rates (Ω/Ωcrit, ZAMS = [0.4, 0.6]) within the cluster as the cause of this singular feature in the CMD of NGC 2509. Interestingly, models that do not include rotation are not as good at reproducing the morphology of the observed CMD in this cluster.


2018 ◽  
Vol 619 ◽  
pp. A155 ◽  
Author(s):  
C. Soubiran ◽  
T. Cantat-Gaudin ◽  
M. Romero-Gómez ◽  
L. Casamiquela ◽  
C. Jordi ◽  
...  

Context. Open clusters are very good tracers of the evolution of the Galactic disc. Thanks to Gaia, their kinematics can be investigated with an unprecedented precision and accuracy. Aims. The distribution of open clusters in the 6D phase space is revisited with Gaia DR2. Methods. The weighted mean radial velocity of open clusters was determined, using the most probable members available from a previous astrometric investigation that also provided mean parallaxes and proper motions. Those parameters, all derived from Gaia DR2 only, were combined to provide the 6D phase-space information of 861 clusters. The velocity distribution of nearby clusters was investigated, as well as the spatial and velocity distributions of the whole sample as a function of age. A high-quality subsample was used to investigate some possible pairs and groups of clusters sharing the same Galactic position and velocity. Results. For the high-quality sample of 406 clusters, the median uncertainty of the weighted mean radial velocity is 0.5 km s−1. The accuracy, assessed by comparison to ground-based high-resolution spectroscopy, is better than 1 km s−1. Open clusters nicely follow the velocity distribution of field stars in the close solar neighbourhood as previously revealed by Gaia DR2. As expected, the vertical distribution of young clusters is very flat, but the novelty is the high precision to which this can be seen. The dispersion of vertical velocities of young clusters is at the level of 5 km s−1. Clusters older than 1 Gyr span distances to the Galactic plane of up to 1 kpc with a vertical velocity dispersion of 14 km s−1, typical of the thin disc. Five pairs of clusters and one group with five members might be physically related. Other binary candidates that have been identified previously are found to be chance alignments.


2019 ◽  
Vol 624 ◽  
pp. A110 ◽  
Author(s):  
M. S. Fujii ◽  
Y. Hori

Context. In clustered environments, stellar encounters can liberate planets from their host stars via close encounters. Although the detection probability of planets suggests that the planet population in open clusters resembles that in the field, only a few dozen planet-hosting stars have been discovered in open clusters. Aims. We explore the survival rates of planets against stellar encounters in open clusters similar to the Pleiades, Hyades, and Praesepe and embedded clusters. Methods. We performed a series of N-body simulations of high-density and low-density open clusters, open clusters that grow via mergers of subclusters, and embedded clusters. We semi-analytically calculated the survival rate of planets in star clusters up to ~1 Gyr using relative velocities, masses, and impact parameters of intruding stars. Results. Less than 1.5% of close-in planets within 1 AU and at most 7% of planets with 1–10 AU are ejected by stellar encounters in clustered environments after the dynamical evolution of star clusters. If a planet population from 0.01–100 AU in an open cluster initially follows the probability distribution function of exoplanets with semi-major axis (ap) between 0.03 and 3 AU in the field discovered by RV surveys (∝ ap−0.6), the PDF of surviving planets beyond ~10 AU in open clusters can be slightly modified to ∝ ap−0.76. The production rate of free-floating planets (FFPs) per star is 0.0096–0.18, where we have assumed that all the stars initially have one giant planet with a mass of 1–13 MJup in a circular orbit. The expected frequency of FFPs is compatible with the upper limit on that of FFPs indicated by recent microlensing surveys. Our survival rates of planets in open clusters suggest that planets within 10 AU around FGKM-type stars are rich in relatively-young (≲10–100 Myr for open clusters and ~1–10 Myr for embedded clusters), less massive open clusters, which are promising targets for planet searches.


2019 ◽  
Vol 627 ◽  
pp. A119 ◽  
Author(s):  
R. Carrera ◽  
M. Pasquato ◽  
A. Vallenari ◽  
L. Balaguer-Núñez ◽  
T. Cantat-Gaudin ◽  
...  

Context. NGC 2682 is a nearby open cluster that is approximately 3.5 Gyr old. Dynamically, most open clusters are expected to dissolve on shorter timescales of ≈1 Gyr. That it has survived until now means that NGC 2682 was likely much more massive in the past and is bound to have an interesting dynamical history. Aims. We investigate the spatial distribution of the stars in NGC 2682 to constrain dynamical evolution of the cluster. We particularly focus on the marginally bound stars in the cluster outskirts. Methods. We used Gaia DR2 data to identify NGC 2682 members up to a distance of ∼150 pc (10°). The two methods Clusterix and UPMASK were applied to this end. We estimated distances to obtain 3D stellar positions using a Bayesian approach to parallax inversion, with an appropriate prior for star clusters. We calculated the orbit of NGC 2682 using the GRAVPOT16 software. Results. The cluster extends up to 200′ (50 pc), which implies that its size is at least twice as large as previously believed. This exceeds the cluster Hill sphere based on the Galactic potential at the distance of NGC 2682. Conclusion. The extra-tidal stars in NGC 2682 may originate from external perturbations such as disc-shocking or dynamical evaporation from two-body relaxation. The former origin is plausible given the orbit of NGC 2682, which crossed the Galactic disc ≈40 Myr ago.


2008 ◽  
Vol 4 (S258) ◽  
pp. 141-152
Author(s):  
Elizabeth J. Jeffery

AbstractOpen clusters have long been objects of interest in astronomy. As a good approximation of essentially pure stellar populations, they have proved very useful for studies in a wide range of astrophysically interesting questions, including stellar evolution and atmospheres, the chemical and dynamical evolution of our Galaxy, and the structure of our Galaxy. Of fundamental importance to our understanding of open clusters is accurate determinations of cluster ages. Currently there are two main techniques for independently determining the ages of stellar populations: main sequence evolution theory (via cluster isochrones) and white dwarf cooling theory. We will provide an overview of these two methods, the current level of agreement between them, as well as a look to the current state of increasing precision in the determination of each. Particularly I will discuss the comprehensive data set collection that is being done by the WIYN Open Cluster Study, as well as a new Bayesian statistical technique that has been developed by our group and its applications in improving and determining white dwarf ages of open clusters. I will review the so-called bright white dwarf technique, a new way of measuring cluster ages with just the bright white dwarfs. I will discuss the first application of the Bayesian technique to the Hyades, also demonstrating the first successful application of the bright white dwarf technique. These results bring the white dwarf age of the Hyades into agreement with the main sequence turn off age for the first time.


Author(s):  
Xu Ding ◽  
Kai-Fan Ji ◽  
Xu-Zhi Li ◽  
Qi-Yuan Cheng ◽  
Jin-Liang Wang ◽  
...  

Abstract An open cluster is an ideal region to study the evolution of stars. In this work, we use Gaia Early Data Release 3 (Gaia EDR3) to derive the fundamental parameters of 30 faint open clusters listed in the catalogue given by Cantat-Gaudin et al. (2018, A&A, 618, A93), but the G magnitude of all of the member stars of that catalogue is brighter than ∼18 mag. This catalogue does not provide isochrone fitting parameters and spatial structure parameters. We acquired the member stars of 30 open clusters using the Density-Based Spatial Clustering of Applications with Noise algorithm in Gaia EDR3. The G magnitude of the member stars using our method can be found down to ∼21 mag. The G-band, GBP-band, and GRP-band data of the member stars construct a good color–magnitude diagram, which can further ensure the precision of isochrone fitting. We also calculated the spatial structure parameters, which are the core radius and the limiting radius, using Markov chain Monte Carlo algorithm.


Sign in / Sign up

Export Citation Format

Share Document