scholarly journals Strain determination of self-adhesive resin cement using 3D digital image correlation method

2018 ◽  
Vol 146 (7-8) ◽  
pp. 372-377 ◽  
Author(s):  
Aleksandra Mitrovic ◽  
Ivan Tanasic ◽  
Nenad Mitrovic ◽  
Milos Milosevic ◽  
Ljiljana Tihacek-Sojic ◽  
...  

Introduction/Objective. In an attempt to simplify dental procedures, a new group of resin cements, self-adhesive resin cements (SARCs), have been introduced. Performance of SARCs can widely vary. One of the main reasons of adhesion failure is polymerization shrinkage. The aim of this study was to determine, evaluate, and measure strain field of self-adhesive dual cure resin cement during polymerization in self-cure mode using 3D digital image correlation (DIC) method. Methods. The self-adhesive Maxcem Elite (Kerr, Orange, CA, USA) cement was tested in five cylindrical samples (5 mm in diameter and 2 mm in thickness) prepared by filling plastic ring-type molds. Digital images were recorded immediately after sample preparation. Results. Non-uniform strain distribution was found in resin cement with higher strain values along the periphery (up to 15%) and lower strain values in central parts (around 4%) of each sample. Conclusion. It can be concluded that DIC is a powerful tool for full-field strain measurements in material characterization.

2011 ◽  
Vol 83 ◽  
pp. 54-59 ◽  
Author(s):  
Rui Zhang ◽  
Ling Feng He ◽  
Chang Rong Li

Applications of the digital image correlation method (DIC) for the determination of the opening mode stress intensity factor (SIF) is investigated using an edge cracked aluminum plate in this paper. Standard compact tension test specimen was tested under tensile loading and the full-field displacement fields of the test sample were recorded using DIC. The SIF associated with unavoidable rigid-body displacement translation were calculated simultaneously from the experimental data by fitting the theoretical displacement field using the method of least-squares. Selection of displacement and convergence values is discussed. For validation, the SIF thus determined is compared with theoretical results, confirming the effectiveness and accuracy of the proposed technique. Therefore it reveals that the DIC is a practical and effective tool for full-field deformation and SIF measurement.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
S. B. Park ◽  
Chirag Shah ◽  
Jae B. Kwak ◽  
Changsoo Jang ◽  
Soonwan Chung ◽  
...  

In this work, a new experimental methodology for analyzing the drop impact response is assessed using a pair of high-speed digital cameras and 3D digital image correlation software. Two different test boards are subjected to Joint Electron Device Engineering Council (JEDEC) standard free-fall impact conditions of half-sine pulse of 1500 G in magnitude and 0.5 ms in duration. The drop is monitored using a pair of synchronized high-speed cameras at a rate of up to 15,000 frames per second. The acquired images are subsequently analyzed to give full-field dynamic deformation, shape, and strain over the entire board during and after impact. To validate this new methodology for analyzing the impact response, the in-plane strain as well as the out-of-plane acceleration at selected locations were measured simultaneously during the drop using strain gauge and accelerometers and were compared with those obtained using high-speed cameras and 3D digital image correlation presented in this paper. Comparison reveals excellent correlation of the transient behavior of the board during impact and confirms the feasibility of using the full-field measurement technique used in this study.


2019 ◽  
Author(s):  
Anliang Wang ◽  
Zhijun Wei ◽  
Xiaodong Chen ◽  
Shunying Ji ◽  
Yu Liu ◽  
...  

Abstract. We took advantage of digital image correlation to measure the full-field deformation of sea ice in a uniaxial compression experiment in situ. The characteristics of failure mode, nonlinear behavior and crack propagation are all captured by the strain field of specimens. To our knowledge, this is the first attempt to experimentally capture sequential full-field deformations in the mechanical properties of sea ice. This achievement will extend the ability to further explore the complex mechanical behaviors of sea ice.


Author(s):  
Fethi Abbassi ◽  
Furqan Ahmad ◽  
Ali Karrech ◽  
Md. Saiful Islam

Abstract Solid Expandable Tubular Technology (SETT) finds its extensive applications in the oil and gas industries where it is used for well completion and remediation. The purpose of his work is to investigate the material behavior upon expansion and to optimize the parameters that are relevant to the expansion process. Tube expansion tests have been performed using a newly designed experimental setup. Seamless stainless steel (AISI 304) tubes have been deformed and monitored using a Digital Image Correlation (DIC) system to measure the full field displacement. A parametric study has been performed in order to study the effect of key expansion parameters such us mandrel geometry (angle), expansion ratio, mandrel-tube friction on the tube expansion and its buckling. The commercial code VIC-3D has been used to process the strain and displacement data obtained by the charge-coupled device (CCD) cameras. Moreover, the tests have been modeled numerically using the Finite Element Method (FEM) to gain further insight into the stress and strain distributions during metal forming. A good correlation has been observed between the numerical and experimental results.


Author(s):  
Antoine Dupuis ◽  
Jean-Jacques Pesce ◽  
Jean-Baptiste Marijon ◽  
Stéphane Roux ◽  
Gilles Régnier

An original methodology using Digital Image Correlation (DIC) has been designed to precisely measure full-field shrinkages of injection molded polymer plates and then to give the opportunity to compare quantitatively extensive numerical simulations to experiments. The principle of the methodology is based on the full-field strain determination between a reference image of the mold and that of injection-molded parts, which are 275 × 100 × 2.2 mm3 plates. To allow for DIC calculation, 50 µm-depth engravings were machined by electro-discharge process at the surface of the mold. The result of the analysis is a 2D full-field shrinkage map over the whole plate surface (i.e. flow and transverse), with a standard deviation of 0.03%. The marking density has been shown to have a roughly linear influence on the precision of shrinkage measurement. This methodology allows the quantification of the effect of several injection parameters on in-plane shrinkage fields: holding pressure, injection flow rate and direction, geometry of injection gates, or geometrical constraints. Once the best set of parameters of material constitutive laws is identified for the simulation of polymer plates, the simulation procedure is ready to be applied on more complex 3D geometries.


Sign in / Sign up

Export Citation Format

Share Document