scholarly journals Novel concepts for near-zero emissions IGCC power plants

2006 ◽  
Vol 10 (3) ◽  
pp. 81-92 ◽  
Author(s):  
Emmanouil Kakaras ◽  
Aggelos Doukelis ◽  
Dionysios Giannakopoulos ◽  
Antonios Koumanakos

The paper aims in examining and evaluating the state-of-the-art in technological concepts towards zero-emission coal-fired power plants. The discussion is based on the evaluation of a novel concept dealing with the carbonation-calcination process of lime for CO2 capture from coal-fired power plants, compared to the integration of CO2 capture in an Integrated Gasification Combined Cycle power plant. Results from thermodynamic simulations dealing with the most important features for CO2 reduction are presented. Preliminary economic considerations are made, taking into account investment and operating costs, in order to assess the electricity cost related to the two different technological approaches. The cycle calculations were performed with the thermodynamic cycle calculation software ENBIPRO (ENergie-BIllanz-PROgram), a powerful tool for heat and mass balance solving of complex thermodynamic circuits, calculation of efficiency, exergetic and exergoeconomic analysis of power plants. The software code models all pieces of equipment that usually appear in power plant installations and can accurately calculate all thermodynamic properties at each node of the thermodynamic circuit, power consumption of each component, flue gas composition etc. [1]. The code has proven its validity by accurately simulating a large number of power plants and through comparison of the results with other commercial software. .

Author(s):  
E. Kakaras ◽  
A. Koumanakos ◽  
A. Doukelis ◽  
D. Giannakopoulos ◽  
Ch. Hatzilau ◽  
...  

Scope of the work presented is to examine and evaluate the state of the art in technological concepts towards the capture and sequestration of CO2 from coal-fired power plants. The discussion is based on the evaluation of a novel concept dealing with the carbonation-calcination process of lime for CO2 capture from coal fired power plants compared to integration of CO2 capture in an Integrated Gasification Combined Cycle power plant. In the novel concept, coal is gasified with steam in the presence of lime. Lime absorbs the CO2 released from the coal, producing limestone. The produced gas can be a low-carbon or even zero-carbon (H2) gas, depending on the ratio of lime added to the process. The produced gas can be used in state-of-the-art combined cycles for electricity generation, producing almost no CO2 emissions or other harmful pollutants. The limestone is regenerated in a second reactor, where pure CO2 is produced, which can be either marketed to industry or sequestered in long term disposal areas. The simulation model of a Combined Cycle power plant, integrating the novel carbonation-calcination process, is based on available data from a typical natural gas fired Combined Cycle power plant. The natural gas fired power plant was adopted to firing with the low-C fuel, maintaining the basic operating characteristics. The performance of the novel concept power plant is compared to that of an IGCC with CO2 removal by means of Selexol absorption. Results from thermodynamic simulation, dealing with the most important features for CO2 reduction, are presented. The operating characteristics, as well as the main figures of the plant energy balances are included. A preliminary economic comparison is also provided, taking into account investment and operating costs, in order to estimate the electricity cost related to the two different technological approaches and the economic constrains towards the potentials for applications are examined. The cycle calculations were performed using the thermodynamic cycle calculation software ENBIPRO (ENergie-BIllanz-PROgram). ENBIPRO is a powerful tool for heat and mass balance calculations, solving complex thermodynamic circuits, calculating the efficiency, and allowing exergetic and exergoeconomic analysis of power plants. The software code models all pieces of equipment that usually appear in power plant installations and can accurately calculate all thermodynamic properties (temperature, pressure, enthalpy) at each node of the thermodynamic circuit, power consumption of each component, flue gas composition etc [1]. The code has proven its validity by accurately simulating a large number of power plants and through comparison of the results with other commercial software.


Author(s):  
Peng Pei ◽  
Manohar Kulkarni

Integrated Gasification Combined Cycle (IGCC) is believed to be one of the most promising technologies to offer electricity and other de-carbon fuels with carbon capture requirement as well as to meet other emission regulations at a relatively low cost. As one of the most important parts, different gasification technologies can greatly influence the performance of the system. This paper develops a model to examine the feasibilities and advantages of using Ultra Superheated Steam (USS) gasification technology in IGCC power plant with carbon dioxide capture and storage (CCS). USS gasification technology converts coal into syngas by the endothermic steam reforming reaction, and the heat required for this reaction is provided by the sensible heat in the ultra superheated steam. A burner utilizes synthetic air (21% O2 and 79% H2O) to burn fuel gas to produce the USS flame for the gasification process. The syngas generated from USS gasification has a higher hydrogen fraction (more than 50%) then other gasification processes. This high ratio of hydrogen is considered to be desired for a “capture-ready” IGCC plant. After gas cleanup and water gas shift reaction, the syngas goes to the Selexol process for carbon dioxide removal. Detailed calculations and analysis are performed to test the performance of USS gasification technology used in IGCC generation systems. Final results such as net output, efficiency penalty for CO2 capture part, and net thermal efficiency are calculated and compared when three different coal types are used. This paper uses published data of USS gasification from previous research at the University of North Dakota. The model also tries to treat the IGCC with carbon dioxide capture system as a whole thermal system, the superheated steam used in USS gasification can be provided by extracting steam from the lower pressure turbine in the Rankine Cycle. The model will make reasonable use of various waste energies and steams for both mechanical and chemical processes to improve the performance of the plant, and incorporate CO2 capture system into the design concept of the power plant.


Author(s):  
Mohammad Mansouri Majoumerd ◽  
Mohsen Assadi ◽  
Peter Breuhaus

Most of the scenarios presented by different actors and organizations in the energy sector predict an increasing power demand in the coming years mainly due to the world’s population growth. Meanwhile, global warming is still one of the planet’s main concerns and carbon capture and sequestration is considered one of the key alternatives to mitigate greenhouse gas emissions. The integrated gasification combined cycle (IGCC) power plant is a coal-derived power production technology which facilitates the pre-combustion capture of CO2 emissions. After the establishment of the baseline configuration of the IGCC plant with CO2 capture (reported in GT2011-45701), a techno-economic evaluation of the whole IGCC system is presented in this paper. Based on publicly available literature, a database was established to evaluate the cost of electricity (COE) for the plant using relevant cost scaling factors for the existing sub-systems, cost index, and financial parameters (such as discount rate and inflation rate). Moreover, an economic comparison has been carried out between the baseline IGCC plant, a natural gas combined cycle (NGCC), and a supercritical pulverized coal (SCPC) plant. The calculation results confirm that an IGCC plant is 180% more expensive than the NGCC. The overall efficiency of the IGCC plant with CO2 capture is 35.7% (LHV basis), the total plant cost (TPC) is 3,786 US$/kW, and the COE is 160 US$/MWh.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hashmi SAM ◽  

The main idea of this research paper is to provide an innovative way of capturing carbon dioxide emissions from a coal powered power plant. This research paper discusses the design and modeling of a carbon capturing membrane which is being used in an IGCC power plant to capture carbon dioxide from its exhaust gases. The modeling and design of the membrane is done using CFD software namely Ansys workbench. The design and modeling is done using two simulations, one describes the design and structure and the second one demonstrates the working mechanism of the membrane. This paper also briefly discusses IGCC which is environmentally benign compared to traditional pulverized coal-fired power plants, and economically feasible compared to the Natural Gas Combine Cycle (NGCC). IGCC power plant is more diverse and offers flexibility in fuel utility. This paper also incorporates a PFD of integrated gasification power plant with the carbon capturing membrane unit integrated in it. Index Terms: Integrated gasification combined cycle power plant, Carbon capture and storage, Gas permeating membrane, CFD based design of gas permeating membrane.


Author(s):  
Frank Sander ◽  
Richard Carroni ◽  
Stefan Rofka ◽  
Eribert Benz

The rigorous reduction of greenhouse gas emissions in the upcoming decades is only achievable with contribution from the following strategies: production efficiency, demand reduction of energy and carbon dioxide (CO2) capture from fossil fueled power plants. Since fossil fueled power plants contribute largely to the overall global greenhouse gas emissions (> 25% [1]), it is worthwhile to capture and store the produced CO2 from those power generation processes. For natural-gas-fired power plants, post-combustion CO2 capture is the most mature technology for low emissions power plants. The capture of CO2 is achieved by chemical absorption of CO2 from the exhaust gas of the power plant. Compared to coal fired power plants, an advantage of applying CO2 capture to a natural-gas-fired combined cycle power plant (CCPP) is that the reference cycle (without CO2 capture) achieves a high net efficiency. This far outweighs the drawback of the lower CO2 concentration in the exhaust. Flue Gas Recirculation (FGR) means that flue gas after the HRSG is partially cooled down and then fed back to the GT intake. In this context FGR is beneficial because the concentration of CO2 can be significantly increased, the volumetric flow to the CO2 capture unit will be reduced, and the overall performance of the CCPP with CO2 capture is increased. In this work the impact of FGR on both the Gas Turbine (GT) and the Combined Cycle Power Plant (CCPP) is investigated and analyzed. In addition, the impact of FGR for a CCPP with and without CO2 capture is investigated. The fraction of flue gas that is recirculated back to the GT, need further to be cooled, before it is mixed with ambient air. Sensitivity studies on flue gas recirculation ratio and temperature are conducted. Both parameters affect the GT with respect to change in composition of working fluid, the relative humidity at the compressor inlet, and the impact on overall performance on both GT and CCPP. The conditions at the inlet of the compressor also determine how the GT and water/steam cycle are impacted separately due to FGR. For the combustion system the air/fuel-ratio (AFR) is an important parameter to show the impact of FGR on the combustion process. The AFR indicates how close the combustion process operates to stoichiometric (or technical) limit for complete combustion. The lower the AFR, the closer operates the combustion process to the stoichiometric limit. Furthermore, the impact on existing operational limitations and the operational behavior in general are investigated and discussed in context of an operation concept for a GT with FGR.


Sign in / Sign up

Export Citation Format

Share Document