scholarly journals Determination of thermal conductivity of rocks samples using fabricated equipment

2008 ◽  
Vol 12 (2) ◽  
pp. 119-128 ◽  
Author(s):  
Olusola Fasunwon ◽  
John Olowofela ◽  
Ojok Ocan ◽  
Olukayode Akinyemi

The aim of the paper is to describe how inexpensive/simple physics equipment was fabricated and used in the determination of thermal conductivity of rock samples. We used the experimental techniques known as transient method of measuring thermal properties of rock samples at ambient temperature. We investigated samples found in five locations/region (Ewekoro, Ile-Ife, Igara, Ago-Iwoye, Abeokuta) in South western Nigeria. Those samples are limestone, dolerite, marble, gneiss, and granite. Although the samples are multi-mineral as revealed by photomicrograph, the thermal conductivity results obtained 1.40, 1.50, 1.57, 1.75, and 2.94 W/m?C, respectively, are found to be consistent with the ones in literature where highly expensive and sophisticated (not easily affordable in developing nation) equipment are used. .

2020 ◽  
Vol 9 (1) ◽  
pp. 23-27
Author(s):  
J.O. Adepitan ◽  
F.O. Ogunsanwo ◽  
J.D. Ayanda ◽  
A.A. Okusanya ◽  
A.D. Adelaja ◽  
...  

The study investigates the thermal properties of different insulating material used in building construction in Ijebu Ode, a tropical rainforest region, south western, Nigeria. Five insulating material; asbestos, Plaster of Paris (P.O.P), PolyVinyl Chloride (PVC), hardboard and paperboard, were subjected to thermal investigation using Lee’s disc electrical method. The result obtained showed that the thermal conductivities obtained are within the range of values specified for good insulating materials. Asbestos was found to be associated with the least thermal conductivity of the value 𝟎. 𝟏𝟕𝟏𝟕 𝑾𝒎-𝟏𝑲-𝟏while PVC had the highest thermal conductivity values of 𝟏. 𝟔𝟒𝟗𝟗 𝑾𝒎-𝟏𝑲-𝟏. This may be associated with the temperature and the heat flux on the surface of the material. The results obtained for thermal conductivity, thermal resistivity and thermal diffusivity correlated favourably when compared with those of previous work from other locations. Asbestos being the material with the lowest thermal conductivity is therefore recommended for use as the suitable insulating ceiling material in the study area. Keywords: thermal conductivity, diffusivity, resistivity, Lee’s disc


Author(s):  
Danie`le Fournier ◽  
Jean Paul Roger ◽  
Christian Fretigny

Lateral heat diffusion thermoreflectance is a very powerful tool for determining directly the thermal diffusivity of layered structures. To do that, experimental data are fitted with the help of a heat diffusion model in which the ratio between the thermal conductivity k and the thermal diffusivity D of each layer is fixed, and the thermal properties of the substrate are known. We have shown in a previous work that it is possible to determine independently the thermal diffusivity and the thermal conductivity of a metallic layer deposited on an insulator, by taking into consideration all the data obtained at different modulation frequencies. Moreover, it is well known that to prevent a lack of adhesion of a gold film deposited on substrates like silica, an intermediate very thin (Cr or Ti) layer is deposited to assure a good thermal contact. We extend our previous work: the asymptotic behaviour determination of the surface temperature wave at large distances from the modulated point heat source for one layer deposited on the substrate to the two layers model. In this case (very thin adhesion coating whose thermal properties and thickness are known), it can be establish that the thermal diffusivity and the thermal conductivity of the top layer can still be determined independently. It is interesting to underline that the calculus can also be extended to the case of a thermal contact resistance which has often to be taken into account between two solids. We call thermal resistance a very thin layer exhibiting a very low thermal conductivity. In this case, the three parameters we have to determine are the thermal conductivity and the thermal diffusivity of the layer and the thermal resistance. We will show that, in this case, the thermal conductivity of the layer is always obtained independently of a bound of the couple thermal resistance – thermal diffusivity, the thermal diffusivity being under bounded and the thermal resistance lower bounded. Experimental results on thin gold layers deposited on silica with and without adhesion layers are presented to illustrate the method. Discussions on the accuracy will also be presented.


Geophysics ◽  
1993 ◽  
Vol 58 (3) ◽  
pp. 357-365 ◽  
Author(s):  
Mike F. Middleton

The aim of the paper is to describe a new, rapid transient method for the determination of thermal diffusivity and thermal conductivity of rocks. The present transient method is based on the application of a constant heat flux to the top surface of a block of rock that is insulated on all other surfaces. Results of a sensitivity analysis of the method indicate that thermal diffusivity can be measured to a best accuracy of about 3 percent, and thermal conductivity of saturated rocks can be determined to a best accuracy of about 8 percent. The method provides estimates of thermal conductivity that are consistent with estimates made using the steady‐state divided‐bar apparatus. The method is applied to determine the thermal conductivity of a suite of rocks from western Australian sedimentary basins.


2015 ◽  
Vol 1095 ◽  
pp. 476-482 ◽  
Author(s):  
A.N. Dmitriev ◽  
Maxim O. Zolotykh ◽  
Yury A. Chesnokov ◽  
Oleg Yu. Ivanov ◽  
Galina Yu. Vitkina

In a laying of a hearth it is usually used to ten different types of the flameproof materials. The characteristics of materials declared by the manufacturer can differ from the actual. For creation of the mathematical model [1, 2] temperatures distributions in a laying of the concrete furnace it is necessary to know thermal conductivity of materials of the specific parties used at construction of the furnace. Definition of the thermal conductivity coefficient allows adapt mathematical model for specific conditions of use. The technique of determination of thermal properties of refractory materials on the temperatures acceleration curve at blowing-in of the blast furnace is described.


1984 ◽  
Vol 106 (3) ◽  
pp. 192-197 ◽  
Author(s):  
J. W. Valvano ◽  
J. T. Allen ◽  
H. F. Bowman

An improved technique is presented for the “in-vivo” determination of thermal conductivity, thermal diffusivity, and perfusion using a self-heated spherical thermistor probe. In the presence of flow, solution of the time-dependent, probe-tissue coupled thermal model allows the measurement of “effective” thermal conductivity and “effective” thermal diffusivity, which represent the thermal properties of the perfused tissue. Perfusion can be quantified from both “effective” thermal properties. In the presence of flow, it has been shown that the transient power response does not follow t−1/2 as has been previously assumed. An isolated rat liver preparation has been developed to validate the measurement technique. Radioactive microspheres are used to determine the true perfusion from the total collected hepatic vein flow. Experimental data demonstrates the ability to quantify perfusion in small volumes of tissue.


2014 ◽  
Vol 933 ◽  
pp. 477-481
Author(s):  
Shuai Chen

Ground source heat pump (GSHP) systems exchange heat with the ground, often through a closed-loop, vertical, borehole heat exchanger (BHE). The performance of the BHE depends on the thermal properties of the ground formation, as well as soil or backfill in the borehole. The design and economic probability of GSHP systems need the thermal conductivity of geological structure and thermal resistance of BHE. Thermal response test (TRT) method allows the in-situ determination of the thermal conductivity (λ) of the ground formation in the vicinity of a BHE, as well as the effective thermal resistance (Rb) of this latter. Thermal properties measured in laboratory experiments do not comply with data of in-situ conditions. The present article describes the results of thermal properties of the BHE whose depth is 100m in Yancheng City, Jiangsu Province, China. As shown in these results, λ and Rb of borehole are determined as 1.84(W·m-1·K-1) and 0.121 (m·K·W-1) respectively.


2004 ◽  
Vol 01 (03) ◽  
pp. 431-443 ◽  
Author(s):  
D. LESNIC

The aim of this paper is to determine the two constant parameters corresponding to the physical properties of a homogeneous heat conductor, namely, the heat capacity and the thermal conductivity, from heat flux and temperature measurements. An iterative nonlinear least-squares boundary element method is proposed. The inversion is performed for both exact and noisy measurements. Numerically, it is shown that the thermal properties can uniquely and stably be retrieved from two measurements containing at least one heat flux measurement for finite homogeneous heat conductors, whilst theoretically, for the semi-infinite conductor it is shown that one heat flux and one internal temperature measurement are necessary and sufficient.


Sign in / Sign up

Export Citation Format

Share Document