scholarly journals Smart ceramic materials for homogeneous combustion in internal combustion engines: A review

2009 ◽  
Vol 13 (3) ◽  
pp. 153-163 ◽  
Author(s):  
Kannan Chidambaram ◽  
Tamilporai Packirisamy

The advantages of using ceramics in advanced heat engines include increased fuel efficiency due to higher engine operating temperatures, more compact designs with lower capacity cooling system. Future internal combustion engines will be characterized by near zero emission level along with low specific fuel consumption. Homogenous combustion which realized inside the engine cylinder has the potential of providing near zero emission level with better fuel economy. However, the accomplishment of homogeneous combustion depends on the air flow structure inside the combustion chamber, fuel injection conditions and turbulence as well as ignition conditions. Various methods and procedures are being adopted to establish the homogeneous combustion inside the engine cylinder. In recent days, porous ceramic materials are being introduced inside the combustion chamber to achieve the homogeneous combustion. This paper investigates the desirable structures, types, and properties of such porous ceramic materials and their positive influence on the combustion process.

2020 ◽  
Vol 318 ◽  
pp. 01014
Author(s):  
Ioan Radu Şugar ◽  
Mihai Banica

As the number of cars increases and large cities become more and more crowded, noise reduction becomes more and more important. The decrease of the fuel consumption and the increase of power to the same cylindrical capacity are always current topics. This paper’s aim is to bring a contribution to solving these problems. The proposed solution consists in the use of ceramic materials in the design of the combustion chamber.


2020 ◽  
pp. 492-498
Author(s):  
A.M. Kolokatov

The characteristics of diamond bars when honing engine cylinder liners are analyzed and general recommendations are given for their selection and processing modes.


Author(s):  
Randy P. Hessel ◽  
Ettore Musu ◽  
Salvador M. Aceves ◽  
Daniel L. Flowers

A computational mesh is required when performing CFD-combustion modeling of internal combustion engines. For combustion chambers with moving pistons and valves, like those in typical cars and trucks, the combustion chamber shape changes continually in response to piston and valve motion. The combustion chamber mesh must then also change at each time step to reflect that change in geometry. The method of changing the mesh from one computational time step to the next is called rezoning. This paper introduces a new method of mesh rezoning for the KIVA3V CFD-combustion program. The standard KIVA3V code from Los Alamos National Laboratory comes with standard rezoners that very nicely handle mesh motion for combustion chambers whose mesh does not include valves and for those with flat heads employing vertical valves. For pent-roof and wedge-roof designs KIVA3V offers three rezoners to choose from, the choice depending on how similar a combustion chamber is to the sample combustion chambers that come with KIVA3V. Often, the rezoners must be modified for meshes of new combustion chamber geometries to allow the mesh to successfully capture change in geometry during the full engine cycle without errors. There is no formal way to approach these modifications; typically this requires a long trial and error process to get a mesh to work for a full engine cycle. The benefit of the new rezoner is that it replaces the three existing rezoners for canted valve configurations with a single rezoner and has much greater stability, so the need for ad hoc modifications of the rezoner is greatly reduced. This paper explains how the new rezoner works and gives examples of its use.


2016 ◽  
Vol 61 (1) ◽  
pp. 411-418 ◽  
Author(s):  
A.J. Dolata

The goal of this work is the description of phenomena occurring during centrifugal infiltration of porous ceramic materials by liquid Al alloy. In this method, the pressure required to infiltration of liquid metal into pores of ceramic is generated by centrifugal force. From the beginning it was assumed that the porous ceramic material will create reinforcement layer in specific area of the casting. The forces that influence on the liquid metal during mould centrifugation and heat exchange between ceramic preform and metal alloy within the area of the front of infiltration were considered in the analysis. The paper presents also selected experiment results.


2021 ◽  
Vol 2021 (6) ◽  
pp. 5421-5425
Author(s):  
MICHAL RICHTAR ◽  
◽  
PETRA MUCKOVA ◽  
JAN FAMFULIK ◽  
JAKUB SMIRAUS ◽  
...  

The aim of the article is to present the possibilities of application of computational fluid dynamics (CFD) to modelling of air flow in combustion engine intake manifold depending on airbox configuration. The non-stationary flow occurs in internal combustion engines. This is a specific type of flow characterized by the fact that the variables depend not only on the position but also on the time. The intake manifold dimension and geometry strongly effects intake air amount. The basic target goal is to investigate how the intake trumpet position in the airbox impacts the filling of the combustion chamber. Furthermore, the effect of different distances between the trumpet neck and the airbox wall in this paper will be compared.


Author(s):  
L Brzeski ◽  
Z Kazimierski

This paper presents a new concept of the externally heated valve (EHV) engine. Air can be used as a working medium in the closed cycle of this engine. Heat delivered to the working air can come from a combustion chamber or another heat generator of an arbitrary type. The engine construction and the thermodynamic cycle performed by it are original and entirely different from the well-known Stirling engine. The main disadvantage of the Stirling engine is its low power density, that is the low power obtained per litre of the engine cylinder volume. In the case of the engine presented here it is possible to achieve power density and efficiency similar to those typical of advanced internal combustion engines. Comparisons between the power of the Stirling engine and the power of the new engine have been performed for the same engine capacity, rotational frequency and maximum and minimum temperatures of the cycle. At the same minimum pressure of the working gas in both engines, the power of the EHV engine is several times higher than that of the Stirling engine, while, on the other hand, at the same maximum pressure of the working gas in both engines, the power of the EHV engine is 20 per cent higher than that of the Stirling engine power. The efficiencies of both engines do not differ significantly from each other.


2004 ◽  
Vol 10 (S02) ◽  
pp. 742-743
Author(s):  
James H Steele

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


2013 ◽  
Vol 804 ◽  
pp. 52-56
Author(s):  
Yan Ping Feng ◽  
Zhi Wen Qiu ◽  
Xiao Bin Ma ◽  
Lei Zhao ◽  
Xin Chao Chen ◽  
...  

In order to lay raw materials foundation for increasing the performance of insulating brick with the low grade quartz sand along the Yangtze River, the quartz porous ceramic materials was researched in this paper. The results show the porosity of the porous quartz ceramics decreased with an increase in the sintering temperature. The pore is like the bowl shape, and the pore is closed pore, which is help to improve the heat insulation property of quartz porous ceramics. The CaSiO4 is produced in the ceramics after sintering processing. The shape is better, and the microstructure is circular and symmetrical pore, which is help to improve the mechanical property of quartz porous ceramics.


Sign in / Sign up

Export Citation Format

Share Document