scholarly journals Influence on droplet formation in the presence of nanoparticles in a microfluidic T-junction

2012 ◽  
Vol 16 (5) ◽  
pp. 1429-1432
Author(s):  
Rui-Jin Wang ◽  
Zhi-Hua Li

The droplet formation in the presence of nanoparticles was studied in a T-shaped microfluidic device numerically. Nanoparticles in continuous phase did not influence droplet formation dynamics obviously. Contrarily, the presence of nanoparticles in dispersed phase will influence evidently droplet formation dynamics, the possible reason is that the accumulation of nanoparticles at the liquid-liquid interface would cause the variation of interfacial tension and the anisotropy of nanoparticles? movement at interface. Discussions on microscopic mechanism of droplet formation in the presence of nanoparticles were carried out.

Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 962
Author(s):  
Chaoqun Shen ◽  
Feifan Liu ◽  
Liangyu Wu ◽  
Cheng Yu ◽  
Wei Yu

Buoyancy-assisted droplet formation in a quiescent continuous phase is an effective technique to produce highly monodispersed droplets, especially millimetric droplets. A comprehensive study combining visualization experiment and numerical simulation was carried out to explore the underlying physics of single droplet generation in a buoyancy-assisted microfluidic device. Typical regimes, including dripping and jetting, were examined to gain a deep insight into the hydrodynamic difference between the regimes. Particularly, the transition from dripping regime to jetting regime was investigated to give an in-depth understanding of the transitional behaviors. The effects of interfacial tension coefficient on the droplet size and formation regimes are discussed, and a regime diagram is summarized. The results show that oscillation of the interface in dripping regimes after detachment is caused by the locally accelerated fluid during the neck pinching process. Droplet formation patterns with the characteristics of both dripping regime and jetting regime are observed and recognized as the transitional regime, and the interface oscillation lasts longer than that in dripping regime, implying intensive competition between interfacial tension and inertial force. Reducing interfacial tension coefficient results in the dripping-to-jetting transition occurring at a lower flow rate of the dispersed phase. The regime diagram indicates that only the inertial force is the indispensable condition of triggering the transition from dripping to jetting.


1992 ◽  
Vol 57 (7) ◽  
pp. 1419-1423
Author(s):  
Jindřich Weiss

New data on critical holdups of dispersed phase were measured at which the phase inversion took place. The systems studied differed in the ratio of phase viscosities and interfacial tension. A weak dependence was found of critical holdups on the impeller revolutions and on the material contactor; on the contrary, a considerable effect of viscosity was found out as far as the viscosity of continuous phase exceeded that of dispersed phase.


Author(s):  
Katerina Loizou ◽  
Wim Thielemans ◽  
Buddhika N. Hewakandamby

The main aim of this study is to examine how the droplet formation in microfluidic T-junctions is influenced by the cross-section and aspect ratio of the microchannels. Several studies focusing on droplet formation in microfluidic devices have investigated the effect of geometry on droplet generation in terms of the ratio between the width of the main channel and the width of the side arm of the T-junction. However, the contribution of the aspect ratio and thus that of the cross-section on the mechanism of break up has not been examined thoroughly with most of the existing work performed in the squeezing regime. Two different microchannel geometries of varying aspect ratios are employed in an attempt to quantify the effect of the ratio between the width of the main channel and the height of the channel on droplet formation. As both height and width of microchannels affect the area on which shear stress acts deforming the dispersed phase fluid thread up to the limit of detaching a droplet, it is postulated that geometry and specifically cross-section of the main channel contribute on the droplet break-up mechanisms and should not be neglected. The above hypothesis is examined in detail, comparing the volume of generated microdroplets at constant flowrate ratios and superficial velocities of continuous phase in two microchannel systems of two different aspect ratios operating at dripping regime. High-speed imaging has been utilised to visualise and measure droplets formed at different flowrates corresponding to constant superficial velocities. Comparing volumes of generated droplets in the two geometries of area ratio near 1.5, a significant increase in volume is reported for the larger aspect ratio utilised, at all superficial velocities tested. As both superficial velocity of continuous phase and flowrate ratio are fixed, superficial velocity of dispersed phase varies. However this variation is not considered to be large enough to justify the significant increase in the droplet volume. Therefore it can be concluded that droplet generation is influenced by the aspect ratio and thus the cross-section of the main channel and its effect should not be depreciated. The paper will present supporting evidence in detail and a comparison of the findings with the existing theories which are mainly focused on the squeezing regime.


Author(s):  
Katerina Loizou ◽  
Voon-Loong Wong ◽  
Wim Thielemans ◽  
Buddhika Hewakandamby

Over the last decade, significant work has been performed in an attempt to quantify the effect of different parameters such as flowrate, geometrical and fluid characteristics on the droplet break up mechanism in microfluidic T-Junctions. This demand is dictated by the need of tight control of the size and dispersity of the droplets generated in such geometries. Even though several researchers have investigated the effect of viscosity ratio on both the droplet break up mechanism as well as on the regime transition, fluid properties have not been included in most scaling laws. It is therefore evident that the contribution of fluid properties has not been quantified thoroughly. In the present work, the effect of fluid properties on the volume of droplets generated in a microfluidic T-junction is investigated. The main aim of this work is to examine the influence of viscosity of both the dispersed and continuous phase as well as the effect of interfacial tension on the size of droplet generated along with the break up mechanism. Three different oils have been utilised as continuous phase in this work to enable investigation of the effect of viscosity of the continuous phase with experiments performed at constant Capillary numbers. Various glycerol weight percentages have been employed to vary the viscosity of the dispersed phase fluid (water). Lastly, the effect of interfacial tension has been explored using two of the oils at constant μcUc (viscous force term). High speed imaging has been utilised to visualise and measure the volume of the resulting droplets. The viscosity ratio (viscosity of dispersed phase over viscosity of continuous phase) between the two phases appears to affect the droplet generation mechanism, especially for the highest viscosity ratio employed (mineral oil-water system) where the system behaves in a noticeably different way. Influence of interfacial tension is also noticeable even though less evident. In terms of the effect of viscosity of dispersed phase on the droplet generation a small difference on the volume of the droplets generated in olive oil glycerol systems is also reported. In an attempt to enumerate the effect of fluid properties on the droplet generation mechanism in a microfluidic T-junction, this paper will present supporting evidence in detail on the above and a comparison of the findings with the existing theories.


2013 ◽  
Vol 481 ◽  
pp. 241-246
Author(s):  
Zhao Miao Liu ◽  
Li Kun Liu

Junction point pressure changes during droplet formation in Y-junction microchannels with differed Y-angles, wetting property and capillary number of the liquid by using a three dimensional numerical simulation. The pressure of the junction point fluctuates throughout the droplet formation process, and it can be used to depict exactly and directly different stages of droplet in microchannels. And the pressure of junctions with different Y-angles of microchannel, different contact angles of dispersed phase with the surface, and different capillary numbers of continuous phase could thus be investigated via the droplet formation mechanism.


2019 ◽  
Vol 23 (8) ◽  
Author(s):  
Nina M. Kovalchuk ◽  
Masanobu Sagisaka ◽  
Kasparas Steponavicius ◽  
Daniele Vigolo ◽  
Mark J. H. Simmons

AbstractThe regimes of drop generation were studied in a Dolomite microfluidic device which combined both hydrodynamic and geometrical flow focusing over a broad range of flow rates. A series of aqueous dispersed phases were used with a viscosity ratio between continuous and dispersed phases of close to unity. Surfactants were added to alter the interfacial tension. It was shown that the transition from dripping to jetting is well described by the capillary numbers of both the dispersed and continuous phases. Only the jetting regime was observed if the capillary number of the dispersed phase was above a critical value, whereas at smaller values of this parameter a jetting → dripping → jetting transition was observed by increasing the capillary number of the continuous phase. The analysis performed has shown that the conditions for a dripping to jetting transition at moderate and large values of the capillary number of the continuous phase can be predicted theoretically by comparison of the characteristic time scales for drop pinch-off and jet growth, whereas the transition at small values cannot. It is suggested that this transition is geometry mediated and is a result of the interplay of jet confinement in the focusing part and a decrease of confinement following entry into the main channel. The flow fields inside the jet of the dispersed phase were qualitatively different for small and large values of the capillary number of the continuous phase revealing the relative contribution of the dispersed phase flow in jet formation. The volume of the drops formed in the jetting regime increased as a power law function of the flow rate ratio of the dispersed to continuous phase, independent of the interfacial tension.


2020 ◽  
Vol 12 (07) ◽  
pp. 2050077
Author(s):  
Seyedeh Sarah Salehi ◽  
Amir Shamloo ◽  
Siamak Kazemzadeh Hannani

Droplet-based microfluidics technologies hold great attention in a wide range of applications, including chemical analysis, drug screening, and food industries. This work aimed to describe the effects of different physical properties of the two immiscible phases on droplet formation in a flow-focusing microfluidic device and determining proper flow rates to form a droplet within the desired size range. A numerical model was developed to solve the governing equations of two-phase flow and the results were validated with previous experimental results. The results demonstrate different types of droplet formation regimes from dripping to jetting and different production rates of droplets as a consequence of the impact of each property on fluid flow, including the viscosity ratio, density, interfacial tension, and the flow rate ratio. Based on the results, flow rate, viscosity, and interfacial tension strongly affect the droplet formation regime as well as its size and shape. Droplet diameter increases by increasing the dispersed to continuous phase flow rate as well as the interfacial tension while it decreases by increasing the viscosity ratio and the continuous phase density. Moreover, the formation of satellite droplets was modeled, and the effect of interfacial tension, the viscosity of the dispersed phase and the continuous phase density were found to be important on the conditions that the satellite droplets are suppressed. Since the formation of the satellite droplets induces polydispersity in droplet size, this phenomenon is avoided. Collectively, choosing appropriate aqueous and oil phases with proper physical properties is crucial in forming monodisperse droplets with defined size and shape.


2011 ◽  
Vol 13 (3) ◽  
pp. 559-564 ◽  
Author(s):  
Lu Peng ◽  
Min Yang ◽  
Shi-shang Guo ◽  
Wei Liu ◽  
Xing-zhong Zhao

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1341
Author(s):  
Li Lei ◽  
Yuting Zhao ◽  
Wukai Chen ◽  
Huiling Li ◽  
Xinyu Wang ◽  
...  

In this study, changes in the droplet formation mechanism and the law of droplet length in a two-phase liquid–liquid system in 400 × 400 μm standard T-junction microchannels were experimentally studied using a high-speed camera. The study investigated the effects of various dispersed phase viscosities, various continuous phase viscosities, and two-phase flow parameters on droplet length. Two basic flow patterns were observed: slug flow dominated by the squeezing mechanism, and droplet flow dominated by the shear mechanism. The dispersed phase viscosity had almost no effect on droplet length. However, the droplet length decreased with increasing continuous phase viscosity, increasing volume flow rate in the continuous phase, and the continuous-phase capillary number Cac. Droplet length also increased with increasing volume flow rate in the dispersed phase and with the volume flow rate ratio. Based on the droplet formation mechanism, a scaling law governing slug and droplet length was proposed and achieved a good fit with experimental data.


Sign in / Sign up

Export Citation Format

Share Document