scholarly journals Gas reservoir evaluation for underbalanced horizontal drilling

2014 ◽  
Vol 18 (5) ◽  
pp. 1691-1694 ◽  
Author(s):  
Gao Li ◽  
Ying-Feng Meng ◽  
Na Wei ◽  
Zhao-Yang Xu ◽  
Hong-Tao Li ◽  
...  

A set of surface equipment for monitoring the parameters of fluid and pressure while drilling was developed, and mathematical models for gas reservoir seepage and wellbore two-phase flow were established. Based on drilling operation parameters, well structure and monitored parameters, the wellbore pressure and the gas reservoir permeability could be predicted theoretically for underbalanced horizontal drilling. Based on the monitored gas production along the well depth, the gas reservoir type could be identified.

2013 ◽  
Vol 295-298 ◽  
pp. 3243-3248
Author(s):  
Lei Zhang ◽  
Lai Bing Zhang ◽  
Jun Jie Zhang ◽  
Feng Lan ◽  
Pan Deng

Accurately calculating dynamic reserves for single well in a low-permeability gas reservoir has an important guiding significance to high efficiency development of the gas reservoir. During the development of the gas reservoir, dynamic analysis methods were often used to calculate dynamic reserves. Dynamic analysis methods mainly include the material balance method, the gas production method in unit pressure drop, the flexible two-phase method and the production unstable method. Dynamic reserves for four types of gas wells in a low-permeability gas field were calculated using these four methods. Calculation results show that dynamic reserves from big to small are respectively obtained using material balance method, gas production method in unit pressure drop, flexible two-phase method and production unstable method. Calculating dynamic reserves obtained by flexible two-phase method and production unstable method are utilized to production dynamic data of gas well, and those obtained by material balance method and gas production method in unit pressure drop are utilized to the reservoir parameters of different state. Therefore, the values of dynamic reserves obtained using flexible two-phase method and production unstable method in the low-permeability gas reservoir may be more accurate than those obtained using the other methods.


2009 ◽  
Vol 12 (04) ◽  
pp. 595-609 ◽  
Author(s):  
Shahab Gerami ◽  
Mehran Pooladi-Darvish

Summary Development of natural gas hydrates as an energy resource has gained significant interest during the past decade. Hydrate reservoirs may be found in different geologic settings including deep ocean sediments and arctic areas. Some reservoirs include a free-gas zone beneath the hydrate and such a situation is referred to as a hydrate-capped gas reservoir. Gas production from such a reservoir could result in pressure reduction in the hydrate cap and endothermic decomposition of hydrates. Well testing in conventional reservoirs is used for estimation of reservoir and near-wellbore properties. Drawdown testing in a hydrate-capped gas reservoir needs to account for the effect of gas from decomposing hydrates. This paper presents a 2D (r,z) mathematical model for a constant-rate drawdown test performed in a well completed in the free-gas zone of a hydrate-capped gas reservoir during the earlytime production. Using energy and material balance equations, the effect of endothermic hydrate decomposition appears as an increased compressibility in the resulting governing equation. The solution for the dimensionless wellbore pressure is derived using Laplace and finite Fourier cosine transforms. The solution to the analytical model was compared with a numerical hydrate reservoir simulator across some range of hydrate reservoir parameters. The use of this solution for determination of reservoir properties is demonstrated using a synthetic example. Furthermore, the solution may be used to quantify the contribution of hydrate decomposition on production performance. Introduction In recent years, demands for energy have stimulated the development of unconventional gas resources, which are available in enormous quantities around the world. Gas hydrate as an unconventional gas resource may be found in two geologic settings (Sloan 1991):on land in permafrost regions, andin the ocean sediments of continental margins. During the last decade, extensive efforts consisting of detection of the hydrate-bearing areas, drilling, logging, coring of the intervals, production pilot-testing, and mathematical modeling of hydrate reservoirs have been pursued to evaluate the potential of gas production from these gas-hydrate resources.


2022 ◽  
Vol 9 ◽  
Author(s):  
Hao Li ◽  
Genbo Peng

CO2 foam fracturing fluid is widely used in unconventional oil and gas production because of its easy flowback and low damage to the reservoir. Nowadays, the fracturing process of CO2 foam fracturing fluid injected by coiled tubing is widely used. However, the small diameter of coiled tubing will cause a large frictional pressure loss in the process of fluid flow, which is not beneficial to the development of fracturing construction. In this paper, the temperature and pressure calculation model of gas, liquid, and solid three-phase fluid flow in the wellbore under annulus injection is established. The model accuracy is verified by comparing the calculation results with the existing gas, solid, and gas and liquid two-phase model of CO2 fracturing. The calculation case of this paper shows that compared with the tubing injection method, the annulus injection of CO2 foam fracturing fluid reduces the friction by 3.06 MPa, and increases the wellbore pressure and temperature by 3.06 MPa and 5.77°C, respectively. Increasing the injection temperature, proppant volumetric concentration, and foam quality will increase the wellbore fluid temperature and make the CO2 transition to the supercritical state while increasing the mass flow rate will do the opposite. The research results verify the feasibility of the annulus injection of CO2 foam fracturing fluid and provide a reference for the improvement of CO2 foam fracturing technology in the field.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Yue Peng ◽  
Tao Li ◽  
Yuxue Zhang ◽  
Yongjie Han ◽  
Dan Wu ◽  
...  

Abstract Multifractured horizontal wells are widely used in the development of tight gas reservoirs to improve the gas production and the ultimate reservoir recovery. Based on the heterogeneity characteristics of the tight gas reservoir, the homogeneous scheme and four typical heterogeneous schemes were established to simulate the production of a multifractured horizontal well. The seepage characteristics and production performance of different schemes were compared and analyzed in detail by the analysis of streamline distribution, pressure distribution, and production data. In addition, the effects of reservoir permeability level, length of horizontal well, and fracture half-length on the gas reservoir recovery were discussed. Results show that the reservoir permeability of the unfractured areas, which are located at both ends of the multifractured horizontal well, determines the seepage ability of the reservoir matrix, showing a significant impact on the long-term gas production. High reservoir permeability level, long horizontal well length, and long fracture half-length can mitigate the negative influence of heterogeneity on the gas production. Our research can provide some guidance for the layout of multifractured horizontal wells and fracturing design in heterogeneous tight gas reservoirs.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Sidong Fang ◽  
Cheng Dai ◽  
Junsheng Zeng ◽  
Heng Li

Abstract In this paper, the development of a three-dimensional, two-phase fluid flow model (Modified Embedded Discrete Fracture Model) to study flow performances of a fractured horizontal well in deep-marine shale gas is presented. Deep-marine shale gas resources account for nearly 80% in China, which is the decisive resource basis for large-scale shale gas production. The dynamic characteristics of deep shale gas reservoirs are quite different and more complex. This paper uses the embedded discrete fracture model to simulate artificial fractures (main fractures and secondary fractures) and the dual-media model to simulate the mixed fractured media of natural fractures and considers the flow characteristics of partitions (artificial fractures, natural fractures, and matrix). Gas desorption is considered in the matrix. Different degrees of stress sensitivity are considered for natural and artificial fractures. Aiming at accurately simulating the whole production history of horizontal well fracturing, especially the dynamic changes of postfracturing flowback, a postfracturing fluid initialization method based on fracturing construction parameters (fracturing fluid volume and pump stop pressure) is established. The flow of gas and water in the early stage after fracturing is simulated, and the regional phase permeability and capillary force curves are introduced to simulate the process of flowback and production of horizontal wells after fracturing. The influence of early fracture closure on the gas-water flow is characterized by stress sensitivity. A deep shale gas reservoir of Sinopec was selected for the case study. The simulation results show it necessary to consider the effects of fractures and stress sensitivity in the matrix when considering the dynamic change of production during the flowback and production stages. The findings of this study can help for better understanding of the fracture distribution characteristics of shale gas, shale gas production principle, and well EUR prediction, which provide a theoretical basis for the effective development of shale gas horizontal well groups.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Minhua Cheng ◽  
Wen Xue ◽  
Meng Zhao ◽  
Guoting Wang ◽  
Bo Ning ◽  
...  

Successful exploitation of tight sandstone gas is one of the important means to ensure the “increasing reserves and production” of the oil and gas initiative and also one of the important ways to ensure national energy security. To further improve the accuracy of historical matching of field data such as gas production and bottom-hole pressure during the production process of this type of gas reservoir, in this study, a new expression of wellbore pressure for the uniform flow of vertical fractured wells in Laplace space based on the point sink function model of vertical fractures in tight sandstone gas reservoirs is constructed. This innovation is based on a typical production data analysis plot of the Blasingame type that uses the numerical inversion decoupling mathematical equation. After analyzing the pressure and pressure derivative characteristics of each flow stage in the typical curves, a new technique of type-curve matching was proposed. In order to verify the correctness of the model and the application value of the field, based on the previous production data of Sulige Gas Field in China, a new set of production data diagnostic chart of tight sandstone gas reservoir was formed. A case analysis showed that the application of the production data analysis method and data diagnosis plot in the field accurately evaluated the development effect of the tight sandstone gas reservoirs, clarified the scale of effective sand bodies, and provided technical support for optimizing and improving the well pattern and realizing the efficient development of gas fields.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Huimin Wang ◽  
J. G. Wang ◽  
Feng Gao ◽  
Xiaolin Wang

A shale gas reservoir is usually hydraulically fractured to enhance its gas production. When the injection of water-based fracturing fluid is stopped, a two-phase flowback is observed at the wellbore of the shale gas reservoir. So far, how this water production affects the long-term gas recovery of this fractured shale gas reservoir has not been clear. In this paper, a two-phase flowback model is developed with multiscale diffusion mechanisms. First, a fractured gas reservoir is divided into three zones: naturally fractured zone or matrix (zone 1), stimulated reservoir volume (SRV) or fractured zone (zone 2), and hydraulic fractures (zone 3). Second, a dual-porosity model is applied to zones 1 and 2, and the macroscale two-phase flow flowback is formulated in the fracture network in zones 2 and 3. Third, the gas exchange between fractures (fracture network) and matrix in zones 1 and 2 is described by a diffusion process. The interactions between microscale gas diffusion in matrix and macroscale flow in fracture network are incorporated in zones 1 and 2. This model is validated by two sets of field data. Finally, parametric study is conducted to explore key parameters which affect the short-term and long-term gas productions. It is found that the two-phase flowback and the flow consistency between matrix and fracture network have significant influences on cumulative gas production. The multiscale diffusion mechanisms in different zones should be carefully considered in the flowback model.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 248 ◽  
Author(s):  
Na Wei ◽  
Wantong Sun ◽  
Yingfeng Meng ◽  
Jinzhou Zhao ◽  
Bjørn Kvamme ◽  
...  

In recent years, the exploitation and utilization of offshore oil and gas resources have attracted more attention. In offshore gas reservoir production, wellbore temperature and pressure change continuously when water-bearing natural gas flows upward. The wellbore temperature is also affected by the low-temperature sea water. The combination of temperatures and pressures controlled by the upward flow, and cooling from the surrounding seawater frequently leads to the conditions of temperature and pressure for hydrate formation. This can lead to pipeline blockage and other safety accidents. In this study, we utilize mathematical models of hydrate phase equilibrium, wellbore temperature, wellbore pressure to study hydrate formation and decomposition in offshore gas reservoir production. Numerical solution algorithms are developed and numerical solutions are validated. The sensitivity influence of different parameters on the regions and regularities of hydrate formation and decomposition in wellbores are obtained through numerical simulations. It is found that increased daily gas production, water content, or geothermal gradient in offshore gas reservoir production pipelines results in less hydrate formation in the wellbores. Accordingly, the risk of wellbore blockage decreases and production safety is maintained. Decreased tubing head pressure or seawater depth results in similar effects. The result of this study establishes a set of prediction methods for hydrate formation and decomposition that can be used in the development of guidelines for safe construction design.


2021 ◽  
Author(s):  
Zeeshan Ahmad ◽  
Abdullah Alhaj Al Hosini ◽  
Mohammed Ibrahim Al Janahi ◽  
Abdulla Mohammed Al Marzouqi ◽  
Muhammad Ali SIDDIQUI ◽  
...  

Abstract Well killing always remains a most radical part during the life cycle of gas production wells with reservoir and completion integrity issues. In moderate permeability gas reservoirs, it will be more challenging due to below issues; Low pressure gas reservoir with moderate reservoir permeability where hydrostatic head of water is almost double the formation pressure Well with the sustainable annulus pressures (Production & first cemented annulus) Well with complex layered scale / asphalting deposition Completion jewelry component integrity breached Recycle reservoir with pressure maintenance Noise logs / corrosion logs generally conducted in order to assess the downhole completion jewelry and potential leak source prior any attempt for killing the well. To achieve the desired accessibility extensive scale analysis for better designing of scale clean out operation carried out specially to access the SPM. Variation of reservoir permeability considered for designing of optimized kill fluid for Depleted horizontal gas reservoir to cater challenge of complete losses. Effective fluid loss solutions designed and implemented to avoid abnormal fluid losses. Further more Polymer based gels used to kill and prevent the gas peculation to surface. Wells having completion and reservoir integrity issue isolated by considering cement zonal isolation, salt plugs, thru-tubing bridge plugs and nipple less plugs. All these barriers having their advantages and disadvantages with reference to work over objectives and their application limitations with respect to well conditions and detail study conducted for each candidate prior execution. Depletion Gas well killing and securing operation considered to be complex in nature and may result serious concern of rig intervention or well future objectives in case of improper execution. Gas wells having reservoir integrity issues and in case of 1st cemented Annulus pressure can be isolated by using thru-tubing bridge plugs. For retrieval of dummy from SPM must be done after setting of downhole plug to avoid any heavy suction for wire line operation. Cement plug operation is not suitable for such wells due to severe losses and fluid circulation limitation. Adequate selection of kill gel fluid as per reservoir characteristics will improve the killing efficiency.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 644 ◽  
Author(s):  
Xinlu Yan ◽  
Songhang Zhang ◽  
Shuheng Tang ◽  
Zhongcheng Li ◽  
Yongxiang Yi ◽  
...  

Due to the unique adsorption and desorption characteristics of coal, coal reservoir permeability changes dynamically during coalbed methane (CBM) development. Coal reservoirs can be classified using a permeability dynamic characterization in different production stages. In the single-phase water flow stage, four demarcating pressures are defined based on the damage from the effective stress on reservoir permeability. Coal reservoirs are classified into vulnerable, alleviative, and invulnerable reservoirs. In the gas desorption stage, two demarcating pressures are used to quantitatively characterize the recovery properties of permeability based on the recovery effect of the matrix shrinkage on permeability, namely the rebound pressure (the pressure corresponding to the lowest permeability) and recovery pressure (the pressure when permeability returns to initial permeability). Coal reservoirs are further classified into recoverable and unrecoverable reservoirs. The physical properties and influencing factors of these demarcating pressures are analyzed. Twenty-six wells from the Shizhuangnan Block in the southern Qinshui Basin of China were examined as a case study, showing that there is a significant correspondence between coal reservoir types and CBM well gas production. This study is helpful for identifying geological conditions of coal reservoirs as well as the productivity potential of CBM wells.


Sign in / Sign up

Export Citation Format

Share Document