scholarly journals Oxygen-enriched combustion of lignite

2015 ◽  
Vol 19 (4) ◽  
pp. 1389-1392 ◽  
Author(s):  
Yong-Feng Zhang ◽  
Xiang-Yun Chen ◽  
Qian-Cheng Zhang ◽  
Chun-Ping Li ◽  
Quan Zhou

The study is concerned on the oxygen-enriched combustion kinetics of lignite. Thermogravimetric experiments were carried out in a thermogravimetric analyzer under O2/N2 conditions, and operated at different heating rates ranging from 5?C per minute to 25?C per minute. Flynn-Wall-Ozawa method was used to calculate the kinetic parameter. The value of activation energy increased when the oxygen concentration varied from 21% to 70%.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Pakamon Pintana ◽  
Nakorn Tippayawong

Thermal behaviors and combustion kinetics of Thai lignite with different SO3-free CaO contents were investigated. Nonisothermal thermogravimetric method was carried out under oxygen environment at heating rates of 10, 30, and 50°C min−1from ambient up to 1300°C. Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods were adopted to estimate the apparent activation energy (E) for the thermal decomposition of these coals. Different thermal degradation behaviors were observed in lignites with low (14%) and high (42%) CaO content. Activation energy of the lignite combustion was found to vary with the conversion fraction. In comparison with the KAS method, higherEvalues were obtained by the FWO method for all conversions considered. High CaO lignite was observed to have higher activation energy than the low CaO coal.


2015 ◽  
Vol 1092-1093 ◽  
pp. 118-121
Author(s):  
Dong Yu Chen ◽  
Qing Yu Liu

To study the influence of KCl pretreating on the pyrolysis kinetics of soybean stalk, the pyrolysis of soybean stalk pretreated by different concentration KCl solutions were performed by nonisothermal thermogravimetric analysis (TGA) at five different heating rates. The Ozawa method was employed to calculate the activation energy. The results showed that the pyrolysis process of the soybean stalk pretreated by 3% and 10% KCl solution can be separated into four stages (water loss, depolymerization and vitrification, thermal decomposition, and carbonization). With the heating rate increasing, the main pyrolysis zone of the TG (thermogravimetric) and DTG curves move to the higher temperature region, and the maximum pyrolysis rate and its corresponding temperature increase too. A small amount of metal salts addition is conducive to the formation of volatile, and a certain amount of metal salts can improve the charcoal yield. More KCl additive makes the lower activation energy value, and the obtained activation energy value increases with the reaction degree.


2019 ◽  
Vol 38 (3) ◽  
pp. 271-278 ◽  
Author(s):  
Zhitong Yao ◽  
Shaoqi Yu ◽  
Weiping Su ◽  
Weihong Wu ◽  
Junhong Tang ◽  
...  

Thermal treatment offers advantages of significant volume reduction and energy recovery for the polyurethane foam from waste refrigerators. In this work, the pyrolysis kinetics of polyurethane foam was investigated using the model-fitting, model-free and distributed activation energy model methods. The thermogravimetric analysis indicated that the polyurethane foam decomposition could be divided into three stages with temperatures of 38°C–400°C, 400°C–550°C and 550°C–1000°C. Peak temperatures for the major decomposition stage (<400°C) were determined as 324°C, 342°C and 344°C for heating rates of 5, 15 and 25 K min-1, respectively. The activation energy ( Eα) from the Friedman, Flynn–Wall–Ozawa and Tang methods increased with degree of conversion ( α) in the range of 0.05 to 0.5. The coefficients from the Flynn–Wall–Ozawa method were larger and the resulted Eα values fell into the range of 163.980–328.190 kJ mol-1 with an average of 206.099 kJ mol-1. For the Coats–Redfern method, the diffusion models offered higher coefficients, but the E values were smaller than that from the Flynn–Wall–Ozawa method. The Eα values derived from the distributed activation energy model method were determined as 163.536–334.231 kJ mol-1, with an average of 206.799 kJ mol-1. The peak of activation energy distribution curve was located at 205.929 kJ mol-1, consistent with the thermogravimetric results. The Flynn–Wall–Ozawa and distributed activation energy model methods were more reliable for describing the polyurethane foam pyrolysis process.


2014 ◽  
Vol 955-959 ◽  
pp. 2803-2808
Author(s):  
Ren Ping Liu ◽  
Rui Yao ◽  
Hui Li

Gentamicin bacteria residue contains high organic compound. The technology of thermochemical conversion can effectively solve the problem of bulk gentamicin residue disposal, research on pyrolysis kinetics of the reaction is the basic work for thermochemical conversion . In this paper, Pyrolysis experiments were carried out in a thermogravimetric analyzer under inert conditions and operated at different heating rates (5, 10, 20 K/min).Two different kinetic models, the iso-conversional Ozawa–Flynn–Wall (Ozawa) models and Satava method were applied on TGA data of gentamicin residue to calculate the kinetic parameters including activation energy, pre-exponential factor and Mechanism function. The results showed that: gentamicin bacteria residue lost most weight of it between 100-650 °C , about 74.23% of the whole sample can decompose under high temperature. The pyrolysis function for gentamicin residue should be G(α) =[-ln(1-α)]3.


2010 ◽  
Vol 638-642 ◽  
pp. 1743-1748
Author(s):  
G.J. Chen ◽  
Y.H. Shih ◽  
Jason S.C. Jang ◽  
S.R. Jian ◽  
P.H. Tsai ◽  
...  

In this study,the (FePt)94-xCu6Nbx (x=0, 2.87, 4.52, 5.67) alloy films were prepared by co-sputtering. The effects of Nb addition content and heat treatment on the microstructure and magnetic properties of the polycrystalline FePtCu films are reported. Our previous experiments showed that the ordering temperature of the (FePt)94Cu6 films reduced to 320 °C, which is much lower than that of the FePt alloy. However, the grain growth after heat treatment limited the practical application in recording media. By adding the Nb content in the (FePt)94Cu6 film, the grain sizes of the films can be adjusted from 50 to 18nm, even for the films annealed at temperature as high as 600°C. DSC traces of as-deposited disorder films at different heating rates, to evaluate the crystallization of the order phase, revealed that the addition of Nb enhanced the activation energy of ordering from 87 kJ/mol to 288 kJ/mol for the (FePt)94-xCu6Nbx (x=0 and 2.87, respectively) films. The reduction of the grain size and the corresponding increase in the activation energy of the Fe-Pt-Cu-Nb films might result from the precipitation of the Nb atoms around the ordering FePt phase. The (FePt)94-xCu6Nbx (x=2.87) film showed a coercive force of 13.4 kOe and the magnetization of 687 emu/cc.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Kuliaei ◽  
Iraj Amiri Amraei ◽  
Seyed Rasoul Mousavi

Abstract The purpose behind this research was to determine the optimum formulation and investigate the cure kinetics of a diglycidyl ether of bisphenol-A (DGEBA)-based epoxy resin cured by dicyandiamide and diuron for use in prepregs. First, all formulations were examined by the tensile test, and then, the specimens with higher mechanical properties were further investigated by viscometry and tack tests. The cure kinetics of the best formulation (based on tack test) in nonisothermal mode was investigated using differential scanning calorimetry at different heating rates. Kissinger and Ozawa method was used for determining the kinetic parameters of the curing process. The activation energy obtained by this method was 71.43 kJ/mol. The heating rate had no significant effect on the reaction order and the total reaction order was approximately constant ( m + n ≅ 2.1 $m+n\cong 2.1$ ). By comparing the experimental data and the theoretical data obtained by Kissinger and Ozawa method, a good agreement was seen between them. By increasing the degree of conversion, the viscosity decreased; as the degree of conversion increased, so did the slope of viscosity. The results of the tack test also indicated that the highest tack could be obtained with 25% progress of curing.


2013 ◽  
Vol 641-642 ◽  
pp. 144-147 ◽  
Author(s):  
Ming Hua Chen ◽  
Tao Zhang ◽  
Wen Ping Chang ◽  
Xiao Biao Jia

The thermal decomposition kinetics of RDX at different rates was studied by thermogravimetric analyzer(TG) and the activation energy of RDX was calculated by distributed activation energy model. It is shown that the thermal decomposition processes of RDX were divided into three stages according to the TG curves, they are molten stage, thermal decomposition stage and eng stage. The activation energies of RDX are all between 124.34 and 181.48KJ•mol-1 in the thermal decomposition stage of non-monotonously increasing. The activation energy of RDX is 139.98 KJ•mol-1 in the molten stage, and the thermal decomposition stage is167.24KJ•mol-1.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1163 ◽  
Author(s):  
Walid Hikal ◽  
Brandon Weeks

Non-isothermal sublimation kinetics of low-volatile materials is more favorable over isothermal data when time is a crucial factor to be considered, especially in the subject of detecting explosives. In this article, we report on the in-situ measurements of the sublimation activation energy for 2,4,6-trinitrotoluene (TNT) continuous nanofilms in air using rising-temperature UV-Vis absorbance spectroscopy at different heating rates. The TNT films were prepared by the spin coating deposition technique. For the first time, the most widely used procedure to determine sublimation rates using thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC) was followed in this work using UV-Vis absorbance spectroscopy. The sublimation kinetics were analyzed using three well-established calculating techniques. The non-isothermal based activation energy values using the Ozawa, Flynn–Wall, and Kissinger models were 105.9 ± 1.4 kJ mol−1, 102.1 ± 2.7 kJ mol−1, and 105.8 ± 1.6 kJ mol−1, respectively. The calculated activation energy agreed well with our previously reported isothermally-measured value for TNT nanofilms using UV-Vis absorbance spectroscopy. The results show that the well-established non-isothermal analytical techniques can be successfully applied at a nanoscale to determine sublimation kinetics using absorbance spectroscopy.


2019 ◽  
Vol 956 ◽  
pp. 181-191
Author(s):  
Jian Lin Xu ◽  
Bing Xue Ma ◽  
Cheng Hu Kang ◽  
Cheng Cheng Xu ◽  
Zhou Chen ◽  
...  

The thermal decomposition kinetics of polybutylene terephthalate (PBT) and flame-retardant PBT (FR-PBT) were investigated by thermogravimetric analysis at various heating rates. The kinetic parameters were determined by using Kissinger, Flynn-Wall-Ozawa and Friedman methods. The y (α) and z (α) master plots were used to identify the thermal decomposition model. The results show that the rate of residual carbon of FR-PBT is higher than that of PBT and the maximum mass loss rate of FR-PBT is lower than that of PBT. The values of activation energy of PBT (208.71 kJ/mol) and FR-PBT (244.78 kJ/mol) calculated by Kissinger method were higher than those of PBT (PBT: 195.54 kJ/mol) and FR-PBT (FR-PBT: 196.00 kJ/mol) calculated by Flynn-Wall-Ozawa method and those of PBT and FR-PBT (PBT: 199.10 kJ/mol, FR-PBT: 206.03 kJ/mol) calculated by Friedman methods. There is a common thing that the values of activation energy of FR-PBT are higher than that of PBT in different methods. The thermal decomposition reaction models of the PBT and FR-PBT can be described by Avarami-Erofeyev model (A1).


Sign in / Sign up

Export Citation Format

Share Document