scholarly journals Building energy efficiency in Guangdong province, China

2019 ◽  
Vol 23 (5 Part B) ◽  
pp. 3251-3262 ◽  
Author(s):  
Chao Luo ◽  
Yulie Gong ◽  
Weibin Ma ◽  
Jun Zhao

Because of irreversibility on building construction, building energy efficiency design is more depended on simulation technology. Ministry of Housing and Urban?Rural Development of China also stated that China?s building energy consumption accounted for 27.5% of the total energy consumption in 2012. Energy consumption is simulated based on the heat transfer principle of building wall, windows, roof and ventilation. Improved measurements are proposed for simulation cases. The heating, ventilation, and air conditioning energy consumption of benchmark and energy efficiency building are simulated based on EnergyPlus software. The most effective energy-saving measurements of energy efficiency building are improving air-conditioning system performance and thermal properties of wall and window. The results show that the energy efficiency ratio of refrigeration system should be more than three and energy-saving ratio is about 30%. Heat transfer coefficient of wall and window should be less than 1.0 W/m2k- and 2.0 ,W/m2k- the energy-saving ratio is more than 16% and 10%, respectively. The sum energy-saving ratios of refrigeration system, wall and window are about 56%. The energy efficiency ratios of roof and air exchanges number are not very obvious. Some energy-saving technologies with high cost are put forward based on simulation results which provide effective ways for building energy efficiency in Guangdong province, China.

2013 ◽  
Vol 361-363 ◽  
pp. 444-447
Author(s):  
Qian Wang ◽  
Rui Li

Air conditioning energy saving is of great significance for building energy efficiency, reduce air conditioning energy consumption can reduce most of the building energy consumption, achieve the purpose of saving energy. This article analyzed and discussed the choice of indoor design parameters, the choice of cold and heat source and the design of the transmission and distribution system.


2014 ◽  
Vol 977 ◽  
pp. 174-177
Author(s):  
Xin Li ◽  
Rui Ying Jia ◽  
Run Ping Niu

The purpose of building energy efficiency diagnosis was to find out the problems existing in the process of using energy and analysis the potential of energy saving to guide the owner who should improve the building energy efficiency as far as possible to reduce building energy consumption. This paper involves only the research on energy saving diagnosis of clean air conditioning system in pharmaceutical industry.


2014 ◽  
Vol 525 ◽  
pp. 439-442
Author(s):  
Ling Jiao

With the development of economy, the progress of the times, the city continued to expand the scale of construction, building energy consumption is more and more serious, and the green energy-saving buildings are paid more and more attention in society. Building energy efficiency can fundamentally promote the savings and the rational use of energy and resources, Building energy efficiency is the needs to guarantee the sustainable development of national economy. With problems in building energy efficiency as the point of penetration, this paper analyses the present situations of building energy consumption and the major energy-saving issues in China. On the basis, in order to promote the green building of sustainable development, from thinking, evaluation system, design and other aspects some suggestions and measures are proposed .


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 442
Author(s):  
Xiaoyue Zhu ◽  
Bo Gao ◽  
Xudong Yang ◽  
Zhong Yu ◽  
Ji Ni

In China, a surging urbanization highlights the significance of building energy conservation. However, most building energy-saving schemes are designed solely in compliance with prescriptive codes and lack consideration of the local situations, resulting in an unsatisfactory effect and a waste of funds. Moreover, the actual effect of the design has yet to be thoroughly verified through field tests. In this study, a method of modifying conventional building energy-saving design based on research into the local climate and residents’ living habits was proposed, and residential buildings in Panzhihua, China were selected for trial. Further, the modification scheme was implemented in an actual project with its effect verified by field tests. Research grasps the precise climate features of Panzhihua, which was previously not provided, and concludes that Panzhihua is a hot summer and warm winter zone. Accordingly, the original internal insulation was canceled, and the shading performance of the windows was strengthened instead. Test results suggest that the consequent change of SET* does not exceed 0.5 °C, whereas variations in the energy consumption depend on the room orientation. For rooms receiving less solar radiation, the average energy consumption increased by approximately 20%, whereas for rooms with a severe western exposure, the average energy consumption decreased by approximately 11%. On the other hand, the cost savings of removing the insulation layer are estimated at 177 million RMB (1 USD ≈ 6.5 RMB) per year. In conclusion, the research-based modification method proposed in this study can be an effective tool for improving building energy efficiency adapted to local conditions.


2012 ◽  
Vol 575 ◽  
pp. 122-125
Author(s):  
Juan Wang

Inner Mongolia mostly belongs to the rural residence building, no any relevant construction standard and building energy efficiency standards. Most of the farmers in build houses without considering building energy problems. This article through to a rural residential energy conservation calculation and analysis, and obtain the energy-saving index.


2012 ◽  
Vol 253-255 ◽  
pp. 716-719
Author(s):  
Yang Wang ◽  
Yan Chen

Under the circumstances of the increasing energy consumption of buildings, the development and application of building energy efficiency technology have attracted the attention of many people. As one of the important building energy efficiency technologies, roof greening has played a positive role in building a low-carbon and energy-saving society. This paper analyzes the technological characteristics and the formation methods of the roof greening system. It also expounds on the role of roof greening in building energy conservation.


2012 ◽  
Vol 512-515 ◽  
pp. 2899-2903
Author(s):  
Xiao Mei Shen ◽  
Ju Wu Xu

With the deepening of the energy conservation of the building, energy saving from the original design of building energy-saving gradually turned to the field detection and completion acceptance, which requires a corresponding energy-efficient means of detection. With the development of infrared technology, the combination of infrared technology and detection methods of building energy-saving, to further promote the development of building energy efficiency testing work. Compared to the traditional heat flow meter or hot-box method, infrared thermal imaging method has no effect on the measured object, detecting the surface temperature of quick reaction speed, accompanying with wide temperature range and high precision, is widely used in various fields of testing work, which has been particularly prominent in the thermal defect detection. In this paper, the method of infrared thermography is used to confirm whether the thermal defects exist in energy-saving construction or not. Testing results show that infrared thermography can accurately reflect the temperature distribution of building wall surface. Infrared thermal imaging to detect the building surface's energy efficiency, which is providing efficient and accurate means of detection for the evaluation of the building energy efficiency. This is to help carry out a comprehensive building energy-saving testing.


Sign in / Sign up

Export Citation Format

Share Document