Discussion to Energy-Saving Design of the Air-Conditioning System

2013 ◽  
Vol 361-363 ◽  
pp. 444-447
Author(s):  
Qian Wang ◽  
Rui Li

Air conditioning energy saving is of great significance for building energy efficiency, reduce air conditioning energy consumption can reduce most of the building energy consumption, achieve the purpose of saving energy. This article analyzed and discussed the choice of indoor design parameters, the choice of cold and heat source and the design of the transmission and distribution system.

2014 ◽  
Vol 977 ◽  
pp. 174-177
Author(s):  
Xin Li ◽  
Rui Ying Jia ◽  
Run Ping Niu

The purpose of building energy efficiency diagnosis was to find out the problems existing in the process of using energy and analysis the potential of energy saving to guide the owner who should improve the building energy efficiency as far as possible to reduce building energy consumption. This paper involves only the research on energy saving diagnosis of clean air conditioning system in pharmaceutical industry.


2019 ◽  
Vol 23 (5 Part B) ◽  
pp. 3251-3262 ◽  
Author(s):  
Chao Luo ◽  
Yulie Gong ◽  
Weibin Ma ◽  
Jun Zhao

Because of irreversibility on building construction, building energy efficiency design is more depended on simulation technology. Ministry of Housing and Urban?Rural Development of China also stated that China?s building energy consumption accounted for 27.5% of the total energy consumption in 2012. Energy consumption is simulated based on the heat transfer principle of building wall, windows, roof and ventilation. Improved measurements are proposed for simulation cases. The heating, ventilation, and air conditioning energy consumption of benchmark and energy efficiency building are simulated based on EnergyPlus software. The most effective energy-saving measurements of energy efficiency building are improving air-conditioning system performance and thermal properties of wall and window. The results show that the energy efficiency ratio of refrigeration system should be more than three and energy-saving ratio is about 30%. Heat transfer coefficient of wall and window should be less than 1.0 W/m2k- and 2.0 ,W/m2k- the energy-saving ratio is more than 16% and 10%, respectively. The sum energy-saving ratios of refrigeration system, wall and window are about 56%. The energy efficiency ratios of roof and air exchanges number are not very obvious. Some energy-saving technologies with high cost are put forward based on simulation results which provide effective ways for building energy efficiency in Guangdong province, China.


2014 ◽  
Vol 525 ◽  
pp. 439-442
Author(s):  
Ling Jiao

With the development of economy, the progress of the times, the city continued to expand the scale of construction, building energy consumption is more and more serious, and the green energy-saving buildings are paid more and more attention in society. Building energy efficiency can fundamentally promote the savings and the rational use of energy and resources, Building energy efficiency is the needs to guarantee the sustainable development of national economy. With problems in building energy efficiency as the point of penetration, this paper analyses the present situations of building energy consumption and the major energy-saving issues in China. On the basis, in order to promote the green building of sustainable development, from thinking, evaluation system, design and other aspects some suggestions and measures are proposed .


2011 ◽  
Vol 99-100 ◽  
pp. 388-392 ◽  
Author(s):  
Wen Yan Pan ◽  
Liu Yang ◽  
Zhu Hui Zhang

As the main consumption equipment, the air-conditioning system of large-sized public buildings in Xi'an consumes 30%~¬60% of the total energy. Combining with the survey data and related norms, the paper analyses the energy consumption from the following aspects: basic situation of building, index of building energy consumption, ratio of energy consumption of air-conditioning system, load of air-conditioning and indoor environment. Thus, it will give a rational and scientific understanding to energy-efficiency of air-conditioning system of large-scale public buildings in Xi'an for the purpose of providing an efficient assistance to improving the energy consumption of air-conditioning system.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 344
Author(s):  
Alejandro Humberto García Ruiz ◽  
Salvador Ibarra Martínez ◽  
José Antonio Castán Rocha ◽  
Jesús David Terán Villanueva ◽  
Julio Laria Menchaca ◽  
...  

Electricity is one of the most important resources for the growth and sustainability of the population. This paper assesses the energy consumption and user satisfaction of a simulated air conditioning system controlled with two different optimization algorithms. The algorithms are a genetic algorithm (GA), implemented from the state of the art, and a non-dominated sorting genetic algorithm II (NSGA II) proposed in this paper; these algorithms control an air conditioning system considering user preferences. It is worth noting that we made several modifications to the objective function’s definition to make it more robust. The energy-saving optimization is essential to reduce CO2 emissions and economic costs; on the other hand, it is desirable for the user to feel comfortable, yet it will entail a higher energy consumption. Thus, we integrate user preferences with energy-saving on a single weighted function and a Pareto bi-objective problem to increase user satisfaction and decrease electrical energy consumption. To assess the experimentation, we constructed a simulator by training a backpropagation neural network with real data from a laboratory’s air conditioning system. According to the results, we conclude that NSGA II provides better results than the state of the art (GA) regarding user preferences and energy-saving.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 442
Author(s):  
Xiaoyue Zhu ◽  
Bo Gao ◽  
Xudong Yang ◽  
Zhong Yu ◽  
Ji Ni

In China, a surging urbanization highlights the significance of building energy conservation. However, most building energy-saving schemes are designed solely in compliance with prescriptive codes and lack consideration of the local situations, resulting in an unsatisfactory effect and a waste of funds. Moreover, the actual effect of the design has yet to be thoroughly verified through field tests. In this study, a method of modifying conventional building energy-saving design based on research into the local climate and residents’ living habits was proposed, and residential buildings in Panzhihua, China were selected for trial. Further, the modification scheme was implemented in an actual project with its effect verified by field tests. Research grasps the precise climate features of Panzhihua, which was previously not provided, and concludes that Panzhihua is a hot summer and warm winter zone. Accordingly, the original internal insulation was canceled, and the shading performance of the windows was strengthened instead. Test results suggest that the consequent change of SET* does not exceed 0.5 °C, whereas variations in the energy consumption depend on the room orientation. For rooms receiving less solar radiation, the average energy consumption increased by approximately 20%, whereas for rooms with a severe western exposure, the average energy consumption decreased by approximately 11%. On the other hand, the cost savings of removing the insulation layer are estimated at 177 million RMB (1 USD ≈ 6.5 RMB) per year. In conclusion, the research-based modification method proposed in this study can be an effective tool for improving building energy efficiency adapted to local conditions.


2018 ◽  
Vol 38 ◽  
pp. 04012
Author(s):  
Sai Feng Xu ◽  
Xing Lin Yang ◽  
Zou Ying Le

For ocean-going vessels sailing in different areas on the sea, the change of external environment factors will cause frequent changes in load, traditional ship air-conditioning system is usually designed with a fixed cooling capacity, this design method causes serious waste of resources. A new type of sea-based air conditioning system is proposed in this paper, which uses the sea-based source heat pump system, combined with variable air volume, variable water technology. The multifunctional cabins’ dynamic loads for a ship navigating in a typical Eurasian route were calculated based on Simulink. The model can predict changes in full voyage load. Based on the simulation model, the effects of variable air volume and variable water volume on the energy consumption of the air-conditioning system are analyzed. The results show that: When the VAV is coupled with the VWV, the energy saving rate is 23.2%. Therefore, the application of variable air volume and variable water technology to marine air conditioning systems can achieve economical and energy saving advantages.


Sign in / Sign up

Export Citation Format

Share Document