scholarly journals O,O'-diethyl-(S,S)-ethylenediamine-N,N'-di-2-(3-cyclohexyl)propanoate dihydrochloride enhances influx of effective NK and NKT cells in murine breast cancer

2020 ◽  
Vol 77 (7) ◽  
pp. 715-723
Author(s):  
Milena Jurisevic ◽  
Nikola Jagic ◽  
Nevena Gajovic ◽  
Aleksandar Arsenijevic ◽  
Milan Jovanovic ◽  
...  

Background/Aim. O,O'-diethyl-(S,S)-ethylenediamine- N,N'-di-2-(3-cyclohexyl)propanoate dihydrochloride (DEEDCP) has been found to possess promising cytotoxic activity against various tumor cell lines. Also, DE-EDCP reduces tumor progression by several mechanisms such as triggering tumor cell death and inhibition of cell proliferation. The aim of present study was to further evaluate antitumor activity of DE-EDCP by investigating effects on migratory potential of tumor cells and anti-tumor immune response. Methods. Migratory potential of DE-EDCP was evaluated by scratch wound assay. Female BALB/c mice were inoculated with 4T1 breast cancer cells and treatment with DE-EDCP started five days following orthotopic tumor implantation. The frequency and phenotype of tumorinfiltrating natural killer (NK) and natural killer T (NKT) cells were analyzed by flow cytometry. Results. DE-EDCP inhibited migratory potential of highly metastatic 4T1 cells. DE-EDCP facilitated accumulation of CD3+CD49+ NKT cells and CD3-CD49+ NK cells in tumor microenvironment. DE-EDCP treatment led to significant decrement of tumor infiltrating anergic NKT cells expressing cytotoxic Tlymphocyte- associated protein 4 (CTLA-4), killer cell lectin like receptor G1 (KLRG-1) and programmed cell death protein- 1 (PD-1). Mice given DE-EDCP had significantly increased percentages of tumoricidal fas ligand (FasL) positive NK cells. Conclusion. DE-EDCP inhibits murine breast cancer progression through direct effects on tumor cells and by facilitating anti-tumor immunity. DE-EDCP enhances accumulation, promotes tumoricidal phenotype and maintenances responsiveness of NK and NKT cells in 4T1 murine breast cancer.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A579-A579
Author(s):  
Alexandra Quackenbush ◽  
Pepper Schedin

BackgroundCancer patients with liver metastases have limited treatment options, especially as only 15–20% are eligible for curative-intent surgical resection.1 Unfortunately, liver metastases also seem to be poorly responsive to immune checkpoint inhibitors (ICI)].2 3 It could be that the unique immunological hallmarks of the liver, including resident macrophages and significant numbers of NK and NKT cells, create a tumor microenvironment that is best suited to alternative forms of immunotherapy that do not rely exclusively on ICI.MethodsWe investigated how the presence of T, natural killer (NK), and NKT cells impact overt liver metastases using a model in which tumor cells are delivered to the liver via intraportal injection to hosts that were either wiltype, nude, or nude with NK-depletion. NK cell depletion was achieved via administration of anti-asialo GM1 antibody 2 days before tumor cell injection and for the duration of the experiment until endpoint at 6 weeks post tumor cell injection, with NK cell depletion confirmed by flow cytometry. Tumors were assessed histologically.ResultsUsing the portal vein model in female nulliparous mice, overt liver metastasis incidence was about 30% across 2 different mammary tumor cell lines. The incidence rose to 80–100% when tumor cells were delivered to hosts in the post-wean window (referred to as involution hosts), mirroring increased breast cancer metastasis to the liver observed in postpartum breast cancer patients.4 Conversely, when tumor cells were delivered to nude hosts, either nulliparous or involution stages, the incidence of metastases dropped to 0–10%. Importantly, tumor cells injected into the mammary gland of nude mice grew robustly with 100% take. Nude hosts lack T cells and NKT cells; however, NK cells are present. Furthermore, the liver is enriched for NK cells, whilst the mammary gland has few NK cells.5 We hypothesized that NK cells, when in the background of T- and NKT-cell depletion (i.e. nude host), restrict outgrowth of mammary tumor cells in the liver. Six weeks after portal vein injection of mammary tumor cells to nude hosts we find increased incidence of metastasis in the NK-depleted group compared to isotype control, as well as increased number of metastases per mouse.ConclusionsOur data suggest that NK cells play an important role in controlling liver metastases in nude hosts, and that NK activity in wild type hosts is insufficient to control liver metastases. Increasing NK cell cytotoxic activity could be an effective immunotherapy strategy to control liver metastases.ReferencesNordlinger B, Sorbye H, Glimelius B, Poston GJ, Schlag PM, Rougier P, Bechstein WO, Primrose JN, Walpole ET, Finch-Jones M, et al: Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): long-term results of a randomised, controlled, phase 3 trial. Lancet Oncol 2013;14(12):1208–1215.Bilen MA, Shabto JM, Martini DJ, Liu Y, Lewis C, Collins H, Akce M, Kissick H, Carthon BC, Shaib WL, et al: Sites of metastasis and association with clinical outcome in advanced stage cancer patients treated with immunotherapy. BMC Cancer 2019;19(1):857.Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Sosman JA, Atkins MB, Leming PD, et al: Five-year survival and correlates among patients with advanced melanoma, renal cell carcinoma, or non-small cell lung cancer treated with nivolumab. JAMA Oncol 2019.Goddard ET, Hill RC, Nemkov T, D’Alessandro A, Hansen KC, Maller O, Mongoue-Tchokote S, Mori M, Partridge AH, Borges VF, et al: The rodent liver undergoes weaning-induced involution and supports breast cancer metastasis. Cancer Discov 2017;7(2):177–187.Shi FD, Ljunggren HG, La Cava A, Van Kaer L. Organ-specific features of natural killer cells. Nat Rev Immunol 2011;11(10):658–671.


2009 ◽  
Vol 206 (7) ◽  
pp. 1495-1503 ◽  
Author(s):  
Cameron S. Brandt ◽  
Myriam Baratin ◽  
Eugene C. Yi ◽  
Jacob Kennedy ◽  
Zeren Gao ◽  
...  

Cancer development is often associated with the lack of specific and efficient recognition of tumor cells by the immune system. Natural killer (NK) cells are lymphocytes of the innate immune system that participate in the elimination of tumors. We report the identification of a tumor cell surface molecule that binds NKp30, a human receptor which triggers antitumor NK cell cytotoxicity and cytokine secretion. This previously unannotated gene belongs to the B7 family and, hence, was designated B7-H6. B7-H6 triggers NKp30-mediated activation of human NK cells. B7-H6 was not detected in normal human tissues but was expressed on human tumor cells, emphasizing that the expression of stress-induced self-molecules associated with cell transformation serves as a mode of cell recognition in innate immunity.


1994 ◽  
Vol 212 (2) ◽  
pp. 285-290 ◽  
Author(s):  
S. Kausalya ◽  
Shrikanth P. Hegde ◽  
J.John Bright ◽  
Ashok Khar

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Esraa Elaraby ◽  
Abdullah Imadeddin Malek ◽  
Hanan W. Abdullah ◽  
Noha Mousaad Elemam ◽  
Maha Saber-Ayad ◽  
...  

Natural killer cells (NK cells) are a crucial constituent of the innate immune system as they mediate immunity against viruses, bacteria, parasites, and most importantly, tumor cells. The exact mechanism of how the innate immune system and specifically NK cells interact with cancer cells is complex and is yet to be understood. Several factors that constitute the tumor microenvironment (TME) such as hypoxia and TGF-β are believed to play a role in the complex physiological reaction of NK cells to tumor cells. On the other hand, several risk factors are implicated in the development and progression of breast cancer, most importantly: obesity. Cytokines released from adipose tissue such as adipokines, leptin, and resistin, among others, are also believed to facilitate tumor progression. In this study, we aimed to build a triad of breast cancer, obesity, and NK cell dysfunction to elucidate a link between these pillars on a cellular level. Directing efforts towards solidifying the link between these factors will help in designing a targeted immunotherapy with a low side-effect profile that can revolutionize breast cancer treatment and improve survival in obese patients.


2020 ◽  
Vol 8 (1) ◽  
pp. e000325 ◽  
Author(s):  
Luna Minute ◽  
Alvaro Teijeira ◽  
Alfonso R Sanchez-Paulete ◽  
Maria C Ochoa ◽  
Maite Alvarez ◽  
...  

BackgroundThe immune response to cancer is often conceptualized with the cancer immunity cycle. An essential step in this interpretation is that antigens released by dying tumors are presented by dendritic cells to naive or memory T cells in the tumor-draining lymph nodes. Whether tumor cell death resulting from cytotoxicity, as mediated by T cells or natural killer (NK) lymphocytes, is actually immunogenic currently remains unknown.MethodsIn this study, tumor cells were killed by antigen-specific T-cell receptor (TCR) transgenic CD8 T cells or activated NK cells. Immunogenic cell death was studied analyzing the membrane exposure of calreticulin and the release of high mobility group box 1 (HMGB1) by the dying tumor cells. Furthermore, the potential immunogenicity of the tumor cell debris was evaluated in immunocompetent mice challenged with an unrelated tumor sharing only one tumor-associated antigen and by class I major histocompatibility complex (MHC)-multimer stainings. Mice deficient inBatf3,Ifnar1andSting1were used to study mechanistic requirements.ResultsWe observe in cocultures of tumor cells and effector cytotoxic cells, the presence of markers of immunogenic cell death such as calreticulin exposure and soluble HMGB1 protein. Ovalbumin (OVA)-transfected MC38 colon cancer cells, exogenously pulsed to present the gp100 epitope are killed in culture by mouse gp100-specific TCR transgenic CD8 T cells. Immunization of mice with the resulting destroyed cells induces epitope spreading as observed by detection of OVA-specific T cells by MHC multimer staining and rejection of OVA+EG7 lymphoma cells. Similar results were observed in mice immunized with cell debris generated by NK-cell mediated cytotoxicity. Mice deficient inBatf3-dependent dendritic cells (conventional dendritic cells type 1, cDC1) fail to develop an anti-OVA response when immunized with tumor cells killed by cytotoxic lymphocytes. In line with this, cultured cDC1 dendritic cells uptake and can readily cross-present antigen from cytotoxicity-killed tumor cells to cognate CD8+T lymphocytes.ConclusionThese results support that an ongoing cytotoxic antitumor immune response can lead to immunogenic tumor cell death.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A834-A834
Author(s):  
Xue Yao ◽  
Sandro Matosevic

BackgroundThe effectiveness of natural killer (NK) cell-based immunotherapy against solid tumors is limited by the lack of specific antigens and the immunosuppressive tumor microenvironment (TME). Glioblastoma multiforme (GBM) is one such heavily immunosuppressive tumor that has been particularly hard to target and remains without a viable treatment. The development of novel approaches to enhance the efficacy of NK cells against GBM is urgently needed. NK cell engagers (NKCE) have been developed to enhance the efficacy of NK cell therapy.MethodsTo improve the clinical efficacy of NK cell therapy, we are developing a new generation of multi-specific killer engagers, which consists of a neoantigen-targeting moiety, together with cytokine and chemokine-producing domains. Neoantigens are new antigens formed specifically in tumor cells due to genome mutations, making them highly specific tools to target tumor cells. Our engager has been designed to target Wilms' tumor-1 (WT-1), a highly specific antigen overexpressed in GBM among other solid tumors. This is done through the generation of an scFv specific targeting the complex of WT-1126-134/HLA-A*02:01 on the surface of GBM. On the NK cell side, the engager is designed to target the activating receptor NKp46. Incorporation of the cytokine IL-15 within the engager supports the maturation, persistence, and expansion of NK cells in vivo while favoring their proliferation and survival in the tumor microenvironment. Additionally, our data indicated that the chemokine CXCL10 plays an important role in the infiltration of NK cells into GBM, however, GBM tumors produce low levels of this chemokine. Incorporation of a CXCL10-producing function into our engager supports intratumoral NK cell trafficking by promoting, through their synthetic production, increased levels of CXCL10 locally in the tumor microenvironment.ResultsCollectively, this has resulted in a novel multifunctional NK cell engager, combining neoantigen-cytokine-chemokine elements fused to an activating domain-specific to NK cells, and we have investigated its ability to support and enhance NK cell-mediated cytotoxicity against solid tumors in vitro and in vivo against patient-derived GBM models. The multi-specific engager shows both high tumor specificity, as well as the ability to overcome NK cell dysfunction encountered in the GBM TME.ConclusionsWe hypothesize that taking advantage of our multi-functional engager, NK cells will exhibit superior ex vivo expansion, infiltration, and antitumor activity in the treatment of GBM and other solid tumors.


Author(s):  
Oskar Hallgren ◽  
Sonja Aits ◽  
Patrick Brest ◽  
Lotta Gustafsson ◽  
Ann-Kristin Mossberg ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 690-690 ◽  
Author(s):  
Joseph S. Palumbo ◽  
Kathryn E. Talmage ◽  
Jessica V. Massari ◽  
Christine M. La Jeunesse ◽  
Matthew J. Flick ◽  
...  

Abstract A linkage between hemostatic system components and tumor cell metastatic potential has been well established, but the underlying mechanism(s) by which various circulating and cell-associated coagulation factors and platelets promote tumor cell dissemination remains to be fully defined. One potential mechanism by which tumor cell-associated microthrombi might enhance metastatic potential is by interfering with the cytolytic elimination of tumor cell emboli by natural killer (NK) cells. In order to explore this hypothesis, we studied tumor dissemination in mice lacking either fibrinogen or Gαq, a G protein critical for platelet activation. Comparative studies of experimental lung metastasis in control and Gαq−/− mice showed that loss of platelet activation resulted in a two-orders-of-magnitude decrease in pulmonary metastatic foci formed by either Lewis lung carcinoma or B16 melanoma. The difference in metastatic success was not the result of differences in tumor growth rate, as tumors transplanted into the dorsal subcutis of Gαq−/− and wildtype animals grew at similar rates. Rather, tumor cell fate analyses using radiolabeled tumor cells showed that the survival of tumor cells within the lung was significantly improved in mice that retained platelet activation function relative to Gαq−/− mice with a profound platelet activation defect. In order to examine the potential interplay between platelet activation and natural killer cell function, we compared pulmonary tumor cell survival in cohorts of control and Gαq−/− mice immuno-depleted of NK cells with an anti-asialo GM1 antibody. Remarkably, platelet function was no longer a determinant of metastatic potential in mice lacking NK cells. Given that fibrin(ogen) is also an established determinant of metastatic success we explored whether the influence of this key hemostatic factor on tumor cell dissemination was also mechanistically-coupled to natural killer cell function. We interbred fibrinogen-deficient mice with Gz-Ly49A transgenic mice known to have a constitutive deficit in NK cells. In those cohorts of mice with normal NK cells, we affirmed the earlier finding that fibrinogen deficiency resulted in a significant diminution in metastatic potential. However, consistent with our findings in mice with defective platelet activation, fibrinogen was found to no longer be a determinant of metastatic potential in mice lacking NK cells. These data establish another important link between innate immune surveillance and the hemostatic system. Further, it appears that at least one mechanism by which tumor cell-associated microthrombi increase metastatic potential is by restricting NK cell-mediated tumor cell elimination. Given that NK cell cytotoxicity requires direct contact with any target cell, one attractive model presently being explored is that tumor cell-associated platelets physically block NK cell access to tumor cell emboli.


Blood ◽  
2010 ◽  
Vol 116 (13) ◽  
pp. 2286-2294 ◽  
Author(s):  
Don M. Benson ◽  
Courtney E. Bakan ◽  
Anjali Mishra ◽  
Craig C. Hofmeister ◽  
Yvonne Efebera ◽  
...  

Abstract T-cell expression of programmed death receptor-1 (PD-1) down-regulates the immune response against malignancy by interacting with cognate ligands (eg, PD-L1) on tumor cells; however, little is known regarding PD-1 and natural killer (NK) cells. NK cells exert cytotoxicity against multiple myeloma (MM), an effect enhanced through novel therapies. We show that NK cells from MM patients express PD-1 whereas normal NK cells do not and confirm PD-L1 on primary MM cells. Engagement of PD-1 with PD-L1 should down-modulate the NK-cell versus MM effect. We demonstrate that CT-011, a novel anti–PD-1 antibody, enhances human NK-cell function against autologous, primary MM cells, seemingly through effects on NK-cell trafficking, immune complex formation with MM cells, and cytotoxicity specifically toward PD-L1+ MM tumor cells but not normal cells. We show that lenalidomide down-regulates PD-L1 on primary MM cells and may augment CT-011's enhancement of NK-cell function against MM. We demonstrate a role for the PD-1/PD-L1 signaling axis in the NK-cell immune response against MM and a role for CT-011 in enhancing the NK-cell versus MM effect. A phase 2 clinical trial of CT-011 in combination with lenalidomide for patients with MM should be considered.


Sign in / Sign up

Export Citation Format

Share Document