scholarly journals Approximate calculation of Tukey's depth and median with high-dimensional data

2018 ◽  
Vol 28 (4) ◽  
pp. 475-499
Author(s):  
Milica Bogicevic ◽  
Milan Merkle

We present a new fast approximate algorithm for Tukey (halfspace) depth level sets and its implementation-ABCDepth. Given a d-dimensional data set for any d ? 1, the algorithm is based on a representation of level sets as intersections of balls in Rd. Our approach does not need calculations of projections of sample points to directions. This novel idea enables calculations of approximate level sets in very high dimensions with complexity that is linear in d, which provides a great advantage over all other approximate algorithms. Using different versions of this algorithm, we demonstrate approximate calculations of the deepest set of points ("Tukey median") and Tukey's depth of a sample point or out-of-sample point, all with a linear in d complexity. An additional theoretical advantage of this approach is that the data points are not assumed to be in "general position". Examples with real and synthetic data show that the executing time of the algorithm in all mentioned versions in high dimensions is much smaller than the time of other implemented algorithms. Also, our algorithms can be used with thousands of multidimensional observations.

2009 ◽  
Vol 66 (3) ◽  
pp. 367-381 ◽  
Author(s):  
Yong-Woo Lee ◽  
Bernard A. Megrey ◽  
S. Allen Macklin

Multiple linear regressions (MLRs), generalized additive models (GAMs), and artificial neural networks (ANNs) were compared as methods to forecast recruitment of Gulf of Alaska walleye pollock ( Theragra chalcogramma ). Each model, based on a conceptual model, was applied to a 41-year time series of recruitment, spawner biomass, and environmental covariates. A subset of the available time series, an in-sample data set consisting of 35 of the 41 data points, was used to fit an environment-dependent recruitment model. Influential covariates were identified through statistical variable selection methods to build the best explanatory recruitment model. An out-of-sample set of six data points was retained for model validation. We tested each model’s ability to forecast recruitment by applying them to an out-of-sample data set. For a more robust evaluation of forecast accuracy, models were tested with Monte Carlo resampling trials. The ANNs outperformed the other techniques during the model fitting process. For forecasting, the ANNs were not statistically different from MLRs or GAMs. The results indicated that more complex models tend to be more susceptible to an overparameterization problem. The procedures described in this study show promise for building and testing recruitment forecasting models for other fish species.


2018 ◽  
Vol 609 ◽  
pp. A39 ◽  
Author(s):  
S. Czesla ◽  
T. Molle ◽  
J. H. M. M. Schmitt

Most physical data sets contain a stochastic contribution produced by measurement noise or other random sources along with the signal. Usually, neither the signal nor the noise are accurately known prior to the measurement so that both have to be estimated a posteriori. We have studied a procedure to estimate the standard deviation of the stochastic contribution assuming normality and independence, requiring a sufficiently well-sampled data set to yield reliable results. This procedure is based on estimating the standard deviation in a sample of weighted sums of arbitrarily sampled data points and is identical to the so-called DER_SNR algorithm for specific parameter settings. To demonstrate the applicability of our procedure, we present applications to synthetic data, high-resolution spectra, and a large sample of space-based light curves and, finally, give guidelines to apply the procedure in situation not explicitly considered here to promote its adoption in data analysis.


2019 ◽  
Vol 37 (3) ◽  
pp. 671-695
Author(s):  
Attila Csenki ◽  
Daniel Neagu ◽  
Denis Torgunov ◽  
Natasha Micic

AbstractThe concept of proximity curve and a new algorithm are proposed for obtaining clusters in a finite set of data points in the finite dimensional Euclidean space. Each point is endowed with a potential constructed by means of a multi-dimensional Cauchy density, contributing to an overall anisotropic potential function. Guided by the steepest descent algorithm, the data points are successively visited and removed one by one, and at each stage the overall potential is updated and the magnitude of its local gradient is calculated. The result is a finite sequence of tuples, the proximity curve, whose pattern is analysed to give rise to a deterministic clustering. The finite set of all such proximity curves in conjunction with a simulation study of their distribution results in a probabilistic clustering represented by a distribution on the set of dendrograms. A two-dimensional synthetic data set is used to illustrate the proposed potential-based clustering idea. It is shown that the results achieved are plausible since both the ‘geographic distribution’ of data points as well as the ‘topographic features’ imposed by the potential function are well reflected in the suggested clustering. Experiments using the Iris data set are conducted for validation purposes on classification and clustering benchmark data. The results are consistent with the proposed theoretical framework and data properties, and open new approaches and applications to consider data processing from different perspectives and interpret data attributes contribution to patterns.


2012 ◽  
Vol 24 (3) ◽  
pp. 771-804 ◽  
Author(s):  
Kerstin Bunte ◽  
Michael Biehl ◽  
Barbara Hammer

In recent years, a wealth of dimension-reduction techniques for data visualization and preprocessing has been established. Nonparametric methods require additional effort for out-of-sample extensions, because they provide only a mapping of a given finite set of points. In this letter, we propose a general view on nonparametric dimension reduction based on the concept of cost functions and properties of the data. Based on this general principle, we transfer nonparametric dimension reduction to explicit mappings of the data manifold such that direct out-of-sample extensions become possible. Furthermore, this concept offers the possibility of investigating the generalization ability of data visualization to new data points. We demonstrate the approach based on a simple global linear mapping, as well as prototype-based local linear mappings. In addition, we can bias the functional form according to given auxiliary information. This leads to explicit supervised visualization mappings with discriminative properties comparable to state-of-the-art approaches.


2021 ◽  
Vol 14 (3) ◽  
pp. 119
Author(s):  
Fabian Waldow ◽  
Matthias Schnaubelt ◽  
Christopher Krauss ◽  
Thomas Günter Fischer

In this paper, we demonstrate how a well-established machine learning-based statistical arbitrage strategy can be successfully transferred from equity to futures markets. First, we preprocess futures time series comprised of front months to render them suitable for our returns-based trading framework and compile a data set comprised of 60 futures covering nearly 10 trading years. Next, we train several machine learning models to predict whether the h-day-ahead return of each future out- or underperforms the corresponding cross-sectional median return. Finally, we enter long/short positions for the top/flop-k futures for a duration of h days and assess the financial performance of the resulting portfolio in an out-of-sample testing period. Thereby, we find the machine learning models to yield statistically significant out-of-sample break-even transaction costs of 6.3 bp—a clear challenge to the semi-strong form of market efficiency. Finally, we discuss sources of profitability and the robustness of our findings.


Author(s):  
Raul E. Avelar ◽  
Karen Dixon ◽  
Boniphace Kutela ◽  
Sam Klump ◽  
Beth Wemple ◽  
...  

The calibration of safety performance functions (SPFs) is a mechanism included in the Highway Safety Manual (HSM) to adjust SPFs in the HSM for use in intended jurisdictions. Critically, the quality of the calibration procedure must be assessed before using the calibrated SPFs. Multiple resources to aid practitioners in calibrating SPFs have been developed in the years following the publication of the HSM 1st edition. Similarly, the literature suggests multiple ways to assess the goodness-of-fit (GOF) of a calibrated SPF to a data set from a given jurisdiction. This paper uses the calibration results of multiple intersection SPFs to a large Mississippi safety database to examine the relations between multiple GOF metrics. The goal is to develop a sensible single index that leverages the joint information from multiple GOF metrics to assess overall quality of calibration. A factor analysis applied to the calibration results revealed three underlying factors explaining 76% of the variability in the data. From these results, the authors developed an index and performed a sensitivity analysis. The key metrics were found to be, in descending order: the deviation of the cumulative residual (CURE) plot from the 95% confidence area, the mean absolute deviation, the modified R-squared, and the value of the calibration factor. This paper also presents comparisons between the index and alternative scoring strategies, as well as an effort to verify the results using synthetic data. The developed index is recommended to comprehensively assess the quality of the calibrated intersection SPFs.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Elahe Jamalinia ◽  
Faraz S. Tehrani ◽  
Susan C. Steele-Dunne ◽  
Philip J. Vardon

Climatic conditions and vegetation cover influence water flux in a dike, and potentially the dike stability. A comprehensive numerical simulation is computationally too expensive to be used for the near real-time analysis of a dike network. Therefore, this study investigates a random forest (RF) regressor to build a data-driven surrogate for a numerical model to forecast the temporal macro-stability of dikes. To that end, daily inputs and outputs of a ten-year coupled numerical simulation of an idealised dike (2009–2019) are used to create a synthetic data set, comprising features that can be observed from a dike surface, with the calculated factor of safety (FoS) as the target variable. The data set before 2018 is split into training and testing sets to build and train the RF. The predicted FoS is strongly correlated with the numerical FoS for data that belong to the test set (before 2018). However, the trained model shows lower performance for data in the evaluation set (after 2018) if further surface cracking occurs. This proof-of-concept shows that a data-driven surrogate can be used to determine dike stability for conditions similar to the training data, which could be used to identify vulnerable locations in a dike network for further examination.


Author(s):  
Simona Babiceanu ◽  
Sanhita Lahiri ◽  
Mena Lockwood

This study uses a suite of performance measures that was developed by taking into consideration various aspects of congestion and reliability, to assess impacts of safety projects on congestion. Safety projects are necessary to help move Virginia’s roadways toward safer operation, but can contribute to congestion and unreliability during execution, and can affect operations after execution. However, safety projects are assessed primarily for safety improvements, not for congestion. This study identifies an appropriate suite of measures, and quantifies and compares the congestion and reliability impacts of safety projects on roadways for the periods before, during, and after project execution. The paper presents the performance measures, examines their sensitivity based on operating conditions, defines thresholds for congestion and reliability, and demonstrates the measures using a set of Virginia safety projects. The data set consists of 10 projects totalling 92 mi and more than 1M data points. The study found that, overall, safety projects tended to have a positive impact on congestion and reliability after completion, and the congestion variability measures were sensitive to the threshold of reliability. The study concludes with practical recommendations for primary measures that may be used to measure overall impacts of safety projects: percent vehicle miles traveled (VMT) reliable with a customized threshold for Virginia; percent VMT delayed; and time to travel 10 mi. However, caution should be used when applying the results directly to other situations, because of the limited number of projects used in the study.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 37
Author(s):  
Shixun Wang ◽  
Qiang Chen

Boosting of the ensemble learning model has made great progress, but most of the methods are Boosting the single mode. For this reason, based on the simple multiclass enhancement framework that uses local similarity as a weak learner, it is extended to multimodal multiclass enhancement Boosting. First, based on the local similarity as a weak learner, the loss function is used to find the basic loss, and the logarithmic data points are binarized. Then, we find the optimal local similarity and find the corresponding loss. Compared with the basic loss, the smaller one is the best so far. Second, the local similarity of the two points is calculated, and then the loss is calculated by the local similarity of the two points. Finally, the text and image are retrieved from each other, and the correct rate of text and image retrieval is obtained, respectively. The experimental results show that the multimodal multi-class enhancement framework with local similarity as the weak learner is evaluated on the standard data set and compared with other most advanced methods, showing the experience proficiency of this method.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. U67-U76 ◽  
Author(s):  
Robert J. Ferguson

The possibility of improving regularization/datuming of seismic data is investigated by treating wavefield extrapolation as an inversion problem. Weighted, damped least squares is then used to produce the regularized/datumed wavefield. Regularization/datuming is extremely costly because of computing the Hessian, so an efficient approximation is introduced. Approximation is achieved by computing a limited number of diagonals in the operators involved. Real and synthetic data examples demonstrate the utility of this approach. For synthetic data, regularization/datuming is demonstrated for large extrapolation distances using a highly irregular recording array. Without approximation, regularization/datuming returns a regularized wavefield with reduced operator artifacts when compared to a nonregularizing method such as generalized phase shift plus interpolation (PSPI). Approximate regularization/datuming returns a regularized wavefield for approximately two orders of magnitude less in cost; but it is dip limited, though in a controllable way, compared to the full method. The Foothills structural data set, a freely available data set from the Rocky Mountains of Canada, demonstrates application to real data. The data have highly irregular sampling along the shot coordinate, and they suffer from significant near-surface effects. Approximate regularization/datuming returns common receiver data that are superior in appearance compared to conventional datuming.


Sign in / Sign up

Export Citation Format

Share Document