0# and some forcing principles

1986 ◽  
Vol 51 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Matthew Foreman ◽  
Menachem Magidor ◽  
Saharon Shelah

It has been considered desirable by many set theorists to find maximality properties which state that the universe has in some sense “many sets”. The properties isolated thus far have tended to be consistent with each other (as far as we know). For example it is a widely held view that the existence of a supercompact cardinal is consistent with the axiom of determinacy holding in L(R). This consistency has been held to be evidence for the truth of these properties. It is with this in mind that the first author suggested the following:Maximality Principle If P is a partial ordering and G ⊆ P is a V-generic ultrafilter then eithera) there is a real number r ∈ V [G] with r ∉ V, orb) there is an ordinal α such that α is a cardinal in V but not in V[G].This maximality principle applied to garden variety partial orderings has startling results for the structure of V.For example, if for some , then P = 〈{p: p ⊆ κ, ∣p∣ < κ}, ⊆〉 neither adds a real nor collapses a cardinal. Thus from the maximality principle we can deduce that the G. C. H. fails everywhere and there are no inaccessible cardinals. (Hence this principle contradicts large cardinals.) Similarly one can show that there are no Suslin trees on any cardinal κ. These consequences help justify the title “maximality principle”.Since the maximality principle implies that the G. C. H. fails at strong singular limit cardinals it has consistency strength at least that of “many large cardinals”. (See [M].) On the other hand it is not known to be consistent, relative to any assumptions.

1995 ◽  
Vol 1 (3) ◽  
pp. 327-339 ◽  
Author(s):  
Itay Neeman

In this paper I shall present a method for proving determinacy from large cardinals which, in many cases, seems to yield optimal results. One of the main applications extends theorems of Martin, Steel and Woodin about determinacy within the projective hierarchy. The method can also be used to give a new proof of Woodin's theorem about determinacy in L(ℝ).The reason we look for optimal determinacy proofs is not only vanity. Such proofs serve to tighten the connection between large cardinals and descriptive set theory, letting us bring our knowledge of one subject to bear on the other, and thus increasing our understanding of both. A classic example of this is the Harrington-Martin proof that -determinacy implies -determinacy. This is an example of a transfer theorem, which assumes a certain determinacy hypothesis and proves a stronger one. While the statement of the theorem makes no mention of large cardinals, its proof goes through 0#, first proving that-determinacy ⇒ 0# exists,and then that0# exists ⇒ -determinacyMore recent examples of the connection between large cardinals and descriptive set theory include Steel's proof thatADL(ℝ) ⇒ HODL(ℝ) ⊨ GCH,see [9], and several results of Woodin about models of AD+, a strengthening of the axiom of determinacy AD which Woodin has introduced. These proofs not only use large cardinals, but also reveal a deep, structural connection between descriptive set theoretic notions and notions related to large cardinals.


1985 ◽  
Vol 50 (4) ◽  
pp. 1002-1019 ◽  
Author(s):  
Sy D. Friedman

In the wake of Silver's breakthrough on the Singular Cardinals Problem (Silver [74]) followed one of the landmark results in set theory, Jensen's Covering Lemma (Devlin-Jensen [74]): If 0# does not exist then for every uncountable x ⊆ ORD there exists a constructible Y ⊇ X, card(Y) = card(X). Thus it is fair to say that in the absence of large cardinals, V is “close to L”.It is natural to ask, as did Solovay, if we can fairly interpret the phrase “close to L” to mean “generic over L”. For example, if V = L[a], a ⊆ ω and if 0# does not exist then is V-generic over L for some partial ordering ∈ L? Notice that an affirmative answer implies that in the absence of 0#, no real can “code” a proper class of information.Jensen's Coding Theorem provides a negative answer to Solovay's question, in a striking way: Any class can be “coded” by a real without introducing 0#. More precisely, if A ⊆ ORD then there is a forcing definable over 〈L[A], A〉 such that ⊩ V = L[a], a ⊆ ω, A is definable from a. Moreover if 0# ∉ L[A] then ⊩ 0# does not exist. Now as any M ⊨ ZFC can be generically extended to a model of the form L[A] (without introducing 0#) we obtain: For any 〈M, A〉 ⊨ ZFC (that is, M ⊨ ZFC and M obeys Replacement for formulas mentioning A as a predicate) there is an 〈M, A〉-definable forcing such that ⊩ V = L[a], a ⊆ ω, 〈M, A〉 is definable from a. Moreover if 0# ∉ M then ⊩ 0# does not exist.


1981 ◽  
Vol 46 (1) ◽  
pp. 31-40
Author(s):  
Mitchell Spector

The consistency of the Axiom of Determinateness (AD) poses a somewhat problematic question for set theorists. On the one hand, many mathematicians have studied AD, and none has yet derived a contradiction. Moreover, the consequences of AD which have been proven form an extensive and beautiful theory. (See [5] and [6], for example.) On the other hand, many extremely weird propositions follow from AD; these results indicate that AD is not an axiom which we can justify as intuitively true, a priori or by reason of its consequences, and we thus cannot add it to our set theory (as an accepted axiom, evidently true in the cumulative hierarchy of sets). Moreover, these results place doubt on the very consistency of AD. The failure of set theorists to show AD inconsistent over as short a time period as fifteen years can only be regarded as inconclusive, although encouraging, evidence.On the contrary, there is a great deal of rather convincing evidence that the existence of various large cardinals is not only consistent but actually true in the universe of all sets. Thus it becomes of interest to see which consequences of AD can be proven consistent relative to the consistency of ZFC + the existence of some large cardinal. Earlier theorems with this motivation are those of Bull and Kleinberg [2] and Spector ([14]; see also [12], [13]).


1986 ◽  
Vol 51 (3) ◽  
pp. 591-603 ◽  
Author(s):  
Arthur W. Apter ◽  
James M. Henle

The theory of large cardinals in the absence of the axiom of choice (AC) has been examined extensively by set theorists. A particular motivation has been the study of large cardinals and their interrelationships with the axiom of determinacy (AD). Many important and beautiful theorems have been proven in this area, especially by Woodin, who has shown how to obtain, from hypermeasurability, models for the theories “ZF + DC + ∀α < ℵ1(ℵ1 → (ℵ1)α)” and . Thus, consequences of AD whose consistency strength appeared to be beyond that of the more standard large cardinal hypotheses were shown to have suprisingly weak consistency strength.In this paper, we continue the study of large cardinals in the absence of AC and their interrelationships with AD by examining what large cardinal structures are possible on cardinals below ℵω in the absence of AC. Specifically, we prove the following theorems.Theorem 1. Con(ZFC + κ1 < κ2are supercompact cardinals) ⇒ Con(ZF + DC + The club filter on ℵ1is a normal measure + ℵ1and ℵ2are supercompact cardinals).Theorem 2. Con(ZF + AD) ⇒ Con(ZF + ℵ1, ℵ2and ℵ3are measurable cardinals which carry normal measures + μωis not a measure on any of these cardinals).


2020 ◽  
Vol 15 (S359) ◽  
pp. 188-189
Author(s):  
Daniela Hiromi Okido ◽  
Cristina Furlanetto ◽  
Marina Trevisan ◽  
Mônica Tergolina

AbstractGalaxy groups offer an important perspective on how the large-scale structure of the Universe has formed and evolved, being great laboratories to study the impact of the environment on the evolution of galaxies. We aim to investigate the properties of a galaxy group that is gravitationally lensing HELMS18, a submillimeter galaxy at z = 2.39. We obtained multi-object spectroscopy data using Gemini-GMOS to investigate the stellar kinematics of the central galaxies, determine its members and obtain the mass, radius and the numerical density profile of this group. Our final goal is to build a complete description of this galaxy group. In this work we present an analysis of its two central galaxies: one is an active galaxy with z = 0.59852 ± 0.00007, while the other is a passive galaxy with z = 0.6027 ± 0.0002. Furthermore, the difference between the redshifts obtained using emission and absorption lines indicates an outflow of gas with velocity v = 278.0 ± 34.3 km/s relative to the galaxy.


1969 ◽  
Vol 73 (700) ◽  
pp. 255-270
Author(s):  
H. Caplan

The purpose of this prologue is to outline how I have approached the arrogant and impossible task of surveying an unborn century of law. I may also be able to illustrate that the nature and quality of the task is completely different from that attempted in the preceding papers. In the whole paper I have done little more than infer repeatedly, in different ways (a) that the shape of the future so far as law is concerned will be determined by the methods of communication adopted between sectors of the aerospace community and between the aerospace community and society at large, and (b) that the search for effective methods of communication is urgent. But my target is not the lawyers of our community—who I am not qualified to advise. I write for the other members of the Royal Aeronautical Society and I return to the task of persuading them that they have a role to play in evolving future laws for aerospace activities.


2014 ◽  
Vol 29 (27) ◽  
pp. 1450155 ◽  
Author(s):  
Goran S. Djordjevic ◽  
Ljubisa Nesic ◽  
Darko Radovancevic

The significant matter for the construction of the so-called no-boundary proposal is the assumption of signature transition, which has been a way to deal with the problem of initial conditions of the universe. On the other hand, results of Loop Quantum Gravity indicate that the signature change is related to the discrete nature of space at the Planck scale. Motivated by possibility of non-Archimedean and/or noncommutative structure of space–time at the Planck scale, in this work we consider the classical, p-adic and (spatial) noncommutative form of a cosmological model with Friedmann–Robertson–Walker (FRW) metric coupled with a self-interacting scalar field.


2006 ◽  
Vol 71 (3) ◽  
pp. 1029-1043 ◽  
Author(s):  
Natasha Dobrinen ◽  
Sy-David Friedman

AbstractThis paper investigates when it is possible for a partial ordering ℙ to force Pk(Λ)\V to be stationary in Vℙ. It follows from a result of Gitik that whenever ℙ adds a new real, then Pk(Λ)\V is stationary in Vℙ for each regular uncountable cardinal κ in Vℙ and all cardinals λ ≥ κ in Vℙ [4], However, a covering theorem of Magidor implies that when no new ω-sequences are added, large cardinals become necessary [7]. The following is equiconsistent with a proper class of ω1-Erdős cardinals: If ℙ is ℵ1-Cohen forcing, then Pk(Λ)\V is stationary in Vℙ, for all regular κ ≥ ℵ2and all λ ≩ κ. The following is equiconsistent with an ω1-Erdős cardinal: If ℙ is ℵ1-Cohen forcing, then is stationary in Vℙ. The following is equiconsistent with κ measurable cardinals: If ℙ is κ-Cohen forcing, then is stationary in Vℙ.


2009 ◽  
Vol 5 (H15) ◽  
pp. 304-304
Author(s):  
J. C. Berengut ◽  
V. A. Dzuba ◽  
V. V. Flambaum ◽  
J. A. King ◽  
M. G. Kozlov ◽  
...  

Current theories that seek to unify gravity with the other fundamental interactions suggest that spatial and temporal variation of fundamental constants is a possibility, or even a necessity, in an expanding Universe. Several studies have tried to probe the values of constants at earlier stages in the evolution of the Universe, using tools such as big-bang nucleosynthesis, the Oklo natural nuclear reactor, quasar absorption spectra, and atomic clocks (see, e.g. Flambaum & Berengut (2009)).


Author(s):  
Jennifer Gurley

AbstractAgainst anti-realist readings of the Emersonian self, perhaps most influentially Cavell’s reading, this essay argues that Emerson is a devotional writer. Emerson’s notion of subjectivity is based in two complementary modes of action - one receptive and the other expressive - as one works to “align” oneself with the larger forces that constitute and order the universe. How the world is and how we humans make our way through it are not the same and must not be confused. Such confusion is the decisive mistake the anti-realist critic of Emerson makes. The Emersonian subject must experience the laws of reality directly, on one’s own, rather than “secondhand.” Emerson is a dramatist telling the story of how we come to ideas and learn to judge and to act: of how, that is, we come to have experience. Emerson seeks an unshifting ground through a moment of receptivity and a moment of activity. That he often rarely achieves insight does not make him an anti-realist. This essay demonstrates how, by showing - albeit briefly - that Emersonian experience is fundamentally religious: a work of devotion rather than aversion.


Sign in / Sign up

Export Citation Format

Share Document