Sexual Dimorphism and Energy Expenditure for Reproduction in Female Fisher Martes pennanti

Oikos ◽  
1983 ◽  
Vol 40 (2) ◽  
pp. 166 ◽  
Author(s):  
Roger A. Powell ◽  
Richard D. Leonard

2007 ◽  
Vol 293 (4) ◽  
pp. C1302-C1308 ◽  
Author(s):  
A. Valle ◽  
R. Guevara ◽  
F. J. García-Palmer ◽  
P. Roca ◽  
J. Oliver

Caloric restriction (CR) without malnutrition has been shown to increase maximal life span and delay the rate of aging in a wide range of species. It has been proposed that reduction in energy expenditure and oxidative damage may explain the life-extending effect of CR. Sex-related differences also have been shown to influence longevity and energy expenditure in many mammalian species. The aim of the present study was to determine the sex-related differences in rat liver mitochondrial machinery, bioenergetics, and oxidative balance in response to short-term CR. Mitochondria were isolated from 6-mo-old male and female Wistar rats fed ad libitum or subjected to 40% CR for 3 mo. Mitochondrial O2 consumption, activities of the oxidative phosphorylation system (complexes I, III, IV, and V), antioxidative activities [MnSOD, glutathione peroxidase (GPx)], mitochondrial DNA and protein content, mitochondrial H2O2 production, and markers of oxidative damage, as well as cytochrome C oxidase and mitochondrial transcription factor A levels, were measured. Female rats showed a higher oxidative capacity and GPx activity than males. This sexual dimorphism was not modified by CR. Restricted rats showed slightly increased oxygen consumption, complex III activity, and GPx antioxidant activity together with lower levels of oxidative damage. In conclusion, the sexual dimorphism in liver mitochondrial oxidative capacity was unaffected by CR, with females showing higher mitochondrial functionality and ROS protection than males.



Author(s):  
Amanda D. V. MacCannell ◽  
T. Simon Futers ◽  
Anna Whitehead ◽  
Amy Moran ◽  
Klaus K. Witte ◽  
...  

Abstract Objective The prevalence of obesity is growing globally. Adiposity increases the risk for metabolic syndrome, type 2 diabetes and cardiovascular disease. Adipose tissue distribution influences systemic metabolism and impacts metabolic disease risk. The link between sexual dimorphisms of adiposity and metabolism is poorly defined. We hypothesise that depot-specific adipose tissue mitochondrial function contributes to the sexual dimorphism of metabolic flexibility in obesity. Methods Male and female mice fed high fat diet (HFD) or standard diet (STD) from 8–18 weeks of age underwent whole animal calorimetry and high-resolution mitochondrial respirometry analysis on adipose tissue depots. To determine translatability we used RT-qPCR to examine key brown adipocyte-associated gene expression: peroxisome proliferator-activated receptor co-activator 1α, Uncoupling protein 1 and cell death inducing DFFA like effector a in brown adipose tissue (BAT) and subcutaneous adipose tissue (sWAT) of 18-week-old mice and sWAT from human volunteers. Results Male mice exhibited greater weight gain compared to female mice when challenged with HFD. Relative to increased body mass, the adipose to body weight ratio for BAT and sWAT depots was increased in HFD-fed males compared to female HFD-fed mice. Oxygen consumption, energy expenditure, respiratory exchange ratio and food consumption did not differ between males and females fed HFD. BAT mitochondria from obese females showed increased Complex I & II respiration and maximal respiration compared to lean females whereas obese males did not exhibit adaptive mitochondrial BAT respiration. Sexual dimorphism in BAT-associated gene expression in sWAT was also associated with Body Mass Index in humans. Conclusions We show that sexual dimorphism of weight gain is reflected in mitochondrial respiration analysis. Female mice have increased metabolic flexibility to adapt to changes in energy intake by regulating energy expenditure through increased complex II and maximal mitochondrial respiration within BAT when HFD challenged and increased proton leak in sWAT mitochondria.



1989 ◽  
Vol 70 (3) ◽  
pp. 639-641 ◽  
Author(s):  
W. M. Giuliano ◽  
J. A. Litvaitis ◽  
C. L. Stevens


2020 ◽  
Vol 134 (5) ◽  
pp. 473-512 ◽  
Author(s):  
Ryan P. Ceddia ◽  
Sheila Collins

Abstract With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand–receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein–coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.



1987 ◽  
Author(s):  
P. Christopher Earley ◽  
Pauline Wojnaroski ◽  
William Prest
Keyword(s):  


Author(s):  
U Elbelt ◽  
V Haas ◽  
T Hofmann ◽  
S Jeran ◽  
H Pietz ◽  
...  


Author(s):  
I. R. Khuzina ◽  
V. N. Komarov

The paper considers a point of view, based on the conception of the broad understanding of taxons. According to this point of view, rhyncholites of the subgenus Dentatobeccus and Microbeccus are accepted to be synonymous with the genus Rhynchoteuthis, and subgenus Romanovichella is considered to be synonymous with the genus Palaeoteuthis. The criteria, exercising influence on the different approaches to the classification of rhyncholites, have been analyzed (such as age and individual variability, sexual dimorphism, pathological and teratological features, degree of disintegration of material), underestimation of which can lead to inaccuracy. Divestment of the subgenuses Dentatobeccus, Microbeccus and Romanovichella, possessing very bright morphological characteristics, to have an independent status and denomination to their synonyms, has been noted to be unjustified. An artificial system (any suggested variant) with all its minuses is a single probable system for rhyncholites. The main criteria, minimizing its negative sides and proving the separation of the new taxon, is an available mass-scale material. The narrow understanding of the genus, used in sensible limits, has been underlined to simplify the problem of the passing the view about the genus to the other investigators and recognition of rhyncholites for the practical tasks.



1999 ◽  
Author(s):  
C.B. Woolley ◽  
D.B. Chaffin ◽  
J.W. Boyle


2017 ◽  
Vol 17 (1) ◽  
pp. 25-32
Author(s):  
Jacinta Lalchhanhimi ◽  
Lalremsanga H.T.

The breeding biology of tree frog, Polypedates teraiensis was studied during the breeding season at Mizoram University Campus. It was found that sound production by male during the breeding season was primarily a reproductive function and advertisement calls attract females to the breeding areas and announce other males that a given territory is occupied. The aim of this study was to provide the detailed information on the breeding behaviour and the advertisement calls of Polypedates teraiensis. The morphometric measurements of the amplecting pairs (males and females) for sexual dimorphism along with clutch sizes were also studied.



Sign in / Sign up

Export Citation Format

Share Document