mitochondrial oxidative capacity
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 14)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Daniel Scheiber ◽  
Elric Zweck ◽  
Sophie Albermann ◽  
Tomas Jelenik ◽  
Maximilian Spieker ◽  
...  

Author(s):  
Daniele A. Cardinale ◽  
Kasper D. Gejl ◽  
Kristine Grøsfjeld Petersen ◽  
Joachim Nielsen ◽  
Niels Ørtenblad ◽  
...  

Aim: The maintenance of healthy and functional mitochondria is the result of a complex mitochondrial turnover and herein quality-control program which includes both mitochondrial biogenesis and autophagy of mitochondria. The aim of this study was to examine the effect of an intensified training load on skeletal muscle mitochondrial quality control in relation to changes in mitochondrial oxidative capacity, maximal oxygen consumption and performance in highly trained endurance athletes. Methods: 27 elite endurance athletes performed high intensity interval exercise followed by moderate intensity continuous exercise 3 days per week for 4 weeks in addition to their usual volume of training. Mitochondrial oxidative capacity, abundance of mitochondrial proteins, markers of autophagy and antioxidant capacity of skeletal muscle were assessed in skeletal muscle biopsies before and after the intensified training period. Results: The intensified training period increased several autophagy markers suggesting an increased turnover of mitochondrial and cytosolic proteins. In permeabilized muscle fibers, mitochondrial respiration was ~20 % lower after training although some markers of mitochondrial density increased by 5-50%, indicative of a reduced mitochondrial quality by the intensified training intervention. The antioxidative proteins UCP3, ANT1, and SOD2 were increased after training, whereas we found an inactivation of aconitase. In agreement with the lower aconitase activity, the amount of mitochondrial LON protease that selectively degrades oxidized aconitase, was doubled. Conclusion: Together, this suggests that mitochondrial respiratory function is impaired during the initial recovery from a period of intensified endurance training while mitochondrial quality control is slightly activated in highly trained skeletal muscle.


Author(s):  
Gabriel Wagner ◽  
Anna Fenzl ◽  
Josefine Lindroos-Christensen ◽  
Elisa Einwallner ◽  
Julia Husa ◽  
...  

Abstract Obesity and body fat distribution are important risk factors for the development of type 2 diabetes and metabolic syndrome. Evidence has accumulated that this risk is related to intrinsic differences in behavior of adipocytes in different fat depots. We recently identified LIM domain only 3 (LMO3) in human mature visceral adipocytes; however, its function in these cells is currently unknown. The aim of this study was to determine the potential involvement of LMO3-dependent pathways in the modulation of key functions of mature adipocytes during obesity. Based on a recently engineered hybrid rAAV serotype Rec2 shown to efficiently transduce both brown adipose tissue (BAT) and white adipose tissue (WAT), we delivered YFP or Lmo3 to epididymal WAT (eWAT) of C57Bl6/J mice on a high-fat diet (HFD). The effects of eWAT transduction on metabolic parameters were evaluated 10 weeks later. To further define the role of LMO3 in insulin-stimulated glucose uptake, insulin signaling, adipocyte bioenergetics, as well as endocrine function, experiments were conducted in 3T3-L1 adipocytes and newly differentiated human primary mature adipocytes, engineered for transient gain or loss of LMO3 expression, respectively. AAV transduction of eWAT results in strong and stable Lmo3 expression specifically in the adipocyte fraction over a course of 10 weeks with HFD feeding. LMO3 expression in eWAT significantly improved insulin sensitivity and healthy visceral adipose tissue expansion in diet-induced obesity, paralleled by increased serum adiponectin. In vitro, LMO3 expression in 3T3-L1 adipocytes increased PPARγ transcriptional activity, insulin-stimulated GLUT4 translocation and glucose uptake, as well as mitochondrial oxidative capacity in addition to fatty acid oxidation. Mechanistically, LMO3 induced the PPARγ coregulator Ncoa1, which was required for LMO3 to enhance glucose uptake and mitochondrial oxidative gene expression. In human mature adipocytes, LMO3 overexpression promoted, while silencing of LMO3 suppressed mitochondrial oxidative capacity. LMO3 expression in visceral adipose tissue regulates multiple genes that preserve adipose tissue functionality during obesity, such as glucose metabolism, insulin sensitivity, mitochondrial function, and adiponectin secretion. Together with increased PPARγ activity and Ncoa1 expression, these gene expression changes promote insulin-induced GLUT4 translocation, glucose uptake in addition to increased mitochondrial oxidative capacity, limiting HFD-induced adipose dysfunction. These data add LMO3 as a novel regulator improving visceral adipose tissue function during obesity. Key messages LMO3 increases beneficial visceral adipose tissue expansion and insulin sensitivity in vivo. LMO3 increases glucose uptake and oxidative mitochondrial activity in adipocytes. LMO3 increases nuclear coactivator 1 (Ncoa1). LMO3-enhanced glucose uptake and mitochondrial gene expression requires Ncoa1.


2020 ◽  
Vol 21 (24) ◽  
pp. 9540
Author(s):  
Marta Zampino ◽  
Toshiko Tanaka ◽  
Ceereena Ubaida-Mohien ◽  
Giovanna Fantoni ◽  
Julián Candia ◽  
...  

Although mitochondrial dysfunction has been implicated in aging, physical function decline, and several age-related diseases, an accessible and affordable measure of mitochondrial health is still lacking. In this study we identified the proteomic signature of muscular mitochondrial oxidative capacity in plasma. In 165 adults, we analyzed the association between concentrations of plasma proteins, measured using the SOMAscan assay, and skeletal muscle maximal oxidative phosphorylation capacity assessed as post-exercise phosphocreatine recovery time constant (τPCr) by phosphorous magnetic resonance spectroscopy. Out of 1301 proteins analyzed, we identified 87 proteins significantly associated with τPCr, adjusting for age, sex, and phosphocreatine depletion. Sixty proteins were positively correlated with better oxidative capacity, while 27 proteins were correlated with poorer capacity. Specific clusters of plasma proteins were enriched in the following pathways: homeostasis of energy metabolism, proteostasis, response to oxidative stress, and inflammation. The generalizability of these findings would benefit from replication in an independent cohort and in longitudinal analyses.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 124-124
Author(s):  
Marta Zampino ◽  
Richard Semba ◽  
Fatemeh Adelnia ◽  
Jennifer Schrack ◽  
Richard Spencer ◽  
...  

Abstract Resting metabolic rate (RMR) tends to decline with aging. The age-trajectory of decline in RMR is similar to changes that occur in muscle mass, muscle strength and fitness. However, while the decline in these phenotypes have been related to changes of mitochondrial function and oxidative capacity, whether lower RMR is associated with poorer mitochondrial oxidative capacity is unknown. In 619 participants of the Baltimore Longitudinal Study of Aging, we analyzed the cross-sectional association between RMR (kcal/day), assessed by indirect calorimetry, and skeletal muscle maximal oxidative phosphorylation capacity, assessed as post-exercise phosphocreatine recovery time constant (tau-PCr), by phosphorous magnetic resonance spectroscopy. Linear regression models were used to evaluate the relationship between tau-PCr and RMR, adjusting for potential confounders. We found that independent of age, sex, lean body mass, muscle density and fat mass, higher RMR was significantly associated with shorter tau-PCr, indicating greater mitochondrial oxidative capacity. In conclusion, higher RMR appears to be associated with a higher mitochondrial oxidative capacity in skeletal muscle. This association may reflect a relationship between better muscle quality and greater mitochondrial health.


Author(s):  
Marta Zampino ◽  
Richard G Spencer ◽  
Kenneth W Fishbein ◽  
Eleanor M Simonsick ◽  
Luigi Ferrucci

Abstract Background Although mitochondrial dysfunction appears to be a contributing factor in the pathogenesis of cardiovascular and metabolic diseases, empirical data on this association are still lacking. This study evaluated whether mitochondrial oxidative capacity, as assessed by phosphorus magnetic resonance spectroscopy, was associated with cardiovascular risk, as estimated by the Framingham Risk Score (FRS), and with a clinical history of cardiovascular disease (CVD), in community-dwelling adults. Method A total of 616 subjects from the Baltimore Longitudinal Study of Aging (mean age 66 years) underwent a comprehensive clinical evaluation. Mitochondrial oxidative capacity in skeletal muscle was assessed as post-exercise phosphocreatine recovery time constant by phosphorus magnetic resonance spectroscopy. Multivariate regression models were employed to determine the cross-sectional association of mitochondrial oxidative capacity with FRS and history of CVD. Results Decreased mitochondrial oxidative capacity was strongly associated with higher FRS independent of age, body composition, and physical activity. Lower oxidative capacity was also associated with a history of positive of CVD and higher number of CVD events. Conclusions We speculate that the observed association could reflect the effect of an excessive production of oxidative species by dysfunctional mitochondria. Furthermore, decreased energy production could hamper the functionality of heart and vessels. In turn, a malfunctioning cardiovascular apparatus could fail to deliver the oxygen necessary for optimal mitochondrial energy production, therefore creating a vicious cycle. Longitudinal studies are necessary to ascertain the directionality of the association and the eventual presence of common pathogenetic roots. In conclusion, mitochondria could represent an important target for intervention in cardiovascular health.


Author(s):  
Froukje Vanweert ◽  
Marlies de Ligt ◽  
Joris Hoeks ◽  
Matthijs K C Hesselink ◽  
Patrick Schrauwen ◽  
...  

Abstract Context Patients with type 2 diabetes mellitus (T2DM) have elevated plasma branched-chain amino acid (BCAA) levels. The underlying cause, however, is not known. Low mitochondrial oxidation of BCAA levels could contribute to higher plasma BCAA levels. Objective We aimed to investigate ex vivo muscle mitochondrial oxidative capacity and in vivo BCAA oxidation measured by whole-body leucine oxidation rates in patients with T2DM, first-degree relatives (FDRs), and control participants (CONs) with overweight or obesity. Design and Setting An observational, community-based study was conducted. Participants Fifteen patients with T2DM, 13 FDR, and 17 CONs were included (age, 40-70 years; body mass index, 27-35 kg/m2). Main Outcome Measures High-resolution respirometry was used to examine ex vivo mitochondrial oxidative capacity in permeabilized muscle fibers. A subgroup of 5 T2DM patients and 5 CONs underwent hyperinsulinemic-euglycemic clamps combined with 1-13C leucine-infusion to determine whole-body leucine oxidation. Results Total BCAA levels were higher in patients with T2DM compared to CONs, but not in FDRs, and correlated negatively with muscle mitochondrial oxidative capacity (r = –0.44, P < .001). Consistently, whole-body leucine oxidation rate was lower in patients with T2DM vs CON under basal conditions (0.202 ± 0.049 vs 0.275 ± 0.043 μmol kg–1 min–1, P < .05) and tended to be lower during high insulin infusion (0.326 ± 0.024 vs 0.382 ± 0.013 μmol kg–1 min–1, P = .075). Conclusions In patients with T2DM, a compromised whole-body leucine oxidation rate supports our hypothesis that higher plasma BCAA levels may originate at least partly from a low mitochondrial oxidative capacity.


2020 ◽  
Vol 75 (12) ◽  
pp. 2262-2268 ◽  
Author(s):  
Marta Zampino ◽  
Richard D Semba ◽  
Fatemeh Adelnia ◽  
Richard G Spencer ◽  
Kenneth W Fishbein ◽  
...  

Abstract Resting metabolic rate (RMR) tends to decline with aging. The age-trajectory of decline in RMR is similar to changes that occur in muscle mass, muscle strength, and fitness, but while the decline in these phenotypes has been related to changes of mitochondrial function and oxidative capacity, whether lower RMR is associated with poorer mitochondrial oxidative capacity is unknown. In 619 participants of the Baltimore Longitudinal Study of Aging, we analyzed the cross-sectional association between RMR (kcal/day), assessed by indirect calorimetry, and skeletal muscle maximal oxidative phosphorylation capacity, assessed as postexercise phosphocreatine recovery time constant (τ PCr), by phosphorous magnetic resonance spectroscopy. Linear regression models were used to evaluate the relationship between τ PCr and RMR, adjusting for potential confounders. Independent of age, sex, lean body mass, muscle density, and fat mass, higher RMR was significantly associated with shorter τ PCr, indicating greater mitochondrial oxidative capacity. Higher RMR is associated with a higher mitochondrial oxidative capacity in skeletal muscle. This association may reflect a relationship between better muscle quality and greater mitochondrial health.


Sign in / Sign up

Export Citation Format

Share Document