Radiation-Induced DNA Damage in Tumors and Normal Tissues: V. Influence of pH and Nutrient Depletion on the Formation of DNA-Protein Crosslinks in Irradiated Partially and Fully Hypoxic Tumor Cells

1999 ◽  
Vol 151 (2) ◽  
pp. 188 ◽  
Author(s):  
Isaf Al-Nabulsi ◽  
Kenneth T. Wheeler
Author(s):  
Jianghong Zhang ◽  
Yuhong Zhang ◽  
Fang Mo ◽  
Gaurang Patel ◽  
Karl Butterworth ◽  
...  

Radiation-induced bystander effects (RIBE) may have potential implications for radiotherapy, yet the radiobiological impact and underlying mechanisms in hypoxic tumor cells remain to be determined. Using two human tumor cell lines, hepatoma HepG2 cells and glioblastoma T98G cells, the present study found that under both normoxic and hypoxic conditions, increased micronucleus formation and decreased cell survival were observed in non-irradiated bystander cells which had been co-cultured with X-irradiated cells or treated with conditioned-medium harvested from X-irradiated cells. Although the radiosensitivity of hypoxic tumor cells was lower than that of aerobic cells, the yield of micronucleus induced in bystander cells under hypoxia was similar to that measured under normoxia indicating that RIBE is a more significant factor in overall radiation damage of hypoxic cells. When hypoxic cells were treated with dimethyl sulfoxide (DMSO), a scavenger of reactive oxygen species (ROS), or aminoguanidine (AG), an inhibitor of nitric oxide synthase (NOS), before and during irradiation, the bystander response was partly diminished. Furthermore, when only hypoxic bystander cells were pretreated with siRNA hypoxia-inducible factor-1α (HIF-1α), RIBE were decreased slightly but if irradiated cells were treated with siRNA HIF-1α, hypoxic RIBE decreased significantly. In addition, the expression of HIF-1α could be increased in association with other downstream effector molecules such as glucose transporter 1 (GLUT-1), vascular endothelial growth factor (VEGF), and carbonic anhydrase (CA9) in irradiated hypoxic cells. However, the expression of HIF-1α expression in bystander cells was decreased by a conditioned medium from isogenic irradiated cells. The current results showed that under hypoxic conditions, irradiated HepG2 and T98G cells showed reduced radiosensitivity by increasing the expression of HIF-1α and induced a syngeneic bystander effect by decreasing the expression of HIF-1α and regulating its downstream target genes in both the irradiated or bystander cells.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 128
Author(s):  
Lixia Chen ◽  
Yang Zhang ◽  
Xinming Zhang ◽  
Ruijuan Lv ◽  
Rongtian Sheng ◽  
...  

Anticancer treatment is largely affected by the hypoxic tumor microenvironment (TME), which causes the resistance of the tumor to radiotherapy. Combining radiosensitizer compounds and O2 self-enriched moieties is an emerging strategy in hypoxic-tumor treatments. Herein, we engineered GdW10@PDA-CAT (K3Na4H2GdW10O36·2H2O, GdW10, polydopamine, PDA, catalase, CAT) composites as a radiosensitizer for the TME-manipulated enhancement of radiotherapy. In the composites, Gd (Z = 64) and W (Z = 74), as the high Z elements, make X-ray gather in tumor cells, thereby enhancing DNA damage induced by radiation. CAT can convert H2O2 to O2 and H2O to enhance the X-ray effect under hypoxic TME. CAT and PDA modification enhances the biocompatibility of the composites. Our results showed that GdW10@PDA-CAT composites increased the efficiency of radiotherapy in HT29 cells in culture. This polyoxometalates and O2 self-supplement composites provide a promising radiosensitizer for the radiotherapy field.


2000 ◽  
Vol 153 (5) ◽  
pp. 548-556 ◽  
Author(s):  
Vijay K. Kalia ◽  
Isaf Al-Nabulsi ◽  
C. Anne Wallen ◽  
Hong Zhang ◽  
Kenneth T. Wheeler

2021 ◽  
Vol 22 (19) ◽  
pp. 10880
Author(s):  
Zain Mehdi ◽  
Michael S. Petronek ◽  
Jeffrey M. Stolwijk ◽  
Kranti A. Mapuskar ◽  
Amanda L. Kalen ◽  
...  

Interest in the use of pharmacological ascorbate as a treatment for cancer has increased considerably since it was introduced by Cameron and Pauling in the 1970s. Recently, pharmacological ascorbate has been used in preclinical and early-phase clinical trials as a selective radiation sensitizer in cancer. The results of these studies are promising. This review summarizes data on pharmacological ascorbate (1) as a safe and efficacious adjuvant to cancer therapy; (2) as a selective radiosensitizer of cancer via a mechanism involving hydrogen peroxide; and (3) as a radioprotector in normal tissues. Additionally, we present new data demonstrating the ability of pharmacological ascorbate to enhance radiation-induced DNA damage in glioblastoma cells, facilitating cancer cell death. We propose that pharmacological ascorbate may be a general radiosensitizer in cancer therapy and simultaneously a radioprotector of normal tissue.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 24-25
Author(s):  
Hang Su ◽  
Mei-Jun Long ◽  
Joel E Michalek ◽  
Michael Weil ◽  
Chul S Ha

Background: Activation of p53 is one of major pathways by which DNA damaging agents (DDA) such as radiation and chemotherapy cause toxicity in normal tissues and it induces a cascade of events that eventually leads to cell senescence or cell death. We have reported that a brief pretreatment with low dose arsenic (LDA), by temporarily and reversibly downregulating p53 at the time of treatment with DDA, reduces the normal tissue toxicity without compromising tumor response to treatment. This protective effect is selective to normal tissues, as it requires functional p53. Though not every cancer cell has detectable p53 mutations, essentially every cancer cell has dysfunctional p53. Therefore most cancer cells will not be protected by this strategy. Genomic instability and inability to repair DNA damage from DDA in the hematopoietic stem cells have been attributed to the development of therapy-induced myelodysplastic syndrome (tMDS) and acute myeloid leukemia (AML). We have also been studying the effect of LDA on the genome in the setting of cancer therapy. We have reported that LDA pretreatment significantly reduces radiation-induced DNA double strand breaks (DSBs) and apoptosis in normal cells both in-vitro and in-vivo. Persistent DNA damage such as DSBs can trigger genomic instability and can be prevented by proper DNA repair. Our previous work using comet assay to quantify DNA damage after radiation has indicated that DNA repair capacity is enhanced by LDA pretreatment. A role for LDA in maintaining genomic integrity has been implicated in our in-vitro studies, where we found that LDA protected telomeres from enhanced erosion by DDA in Concanavalin A-activated normal human lymphocytes, and that LDA reduced spontaneous and radiation-induced mutations in mouse embryonic stem cells. Yet, whether this p53 downregulation-based strategy helps genome maintenance during cancer treatment using DDA has not been investigated in-vivo. CBA/Ca mice have 15-25% incidence of AML after 3 Gy of total body ionizing radiation (IR). About 95% of mice that develop radiation-induced AML (rAML) have a deletion on chromosome 2 encompassing the PU.1 gene. Since PU.1 deletion is a critical contributor to and a useful surrogate marker for leukemogenesis in the murine rAML model, we tested a hypothesis whether pretreatment with LDA before IR helps maintain genomic integrity by evaluating bone marrow cells for PU.1 gene deletion. Method: One hundred twenty mice were randomized into four groups: PBS+sham IR (control), LDA+sham IR, PBS+IR and LDA+IR. Prior to sham or 3 Gy of IR, CBA/Ca mice were injected with either PBS or LDA intraperitoneally at the dose of 0.4mg/kg for 3 days. At 7, 30 and 180 days after radiation, bone marrow cells were collected from femurs and fixed with Carnoy's Fixative. To assess the effect of LDA on PU.1 gene deletion, fluorescence in-situ hybridization (FISH) assay was performed. An ATTO550 labeled PU.1 probe was designed and used to detect deletions that occur in 2qE1 and involve the PU.1 gene locus, as well as two 6-FAM labeled probes for centromere and telomere respectively. Four to five hundred cells were analyzed for each mouse. Statistical significance was determined from a two-way analysis of variance in log units using SAS Version 9.4. Result: We successfully established the FISH assay that can specifically detect the PU.1 gene not only in metaphase cells but also in interphase cells. As shown in the figure, mice in the LDA+IR group have significantly fewer bone marrow cells exhibiting PU.1 gene deletion compared with PBS+IR group at all three time points examined (Day 7: 2±1.2% vs 3.7±2.6%, P=0.047; Day 30: 1.9±1.1% vs 3.2±1.9%, P=0.040; Day 180: 2.8±1.0% vs 5.6±3.5%, P=0.014). LDA treatment alone has a negligible effect on PU.1 loss as compared to the control group. Conclusion: Our result suggests that LDA pretreatment protects genomic integrity following IR treatment in-vivo. As the development of rAML is a multi-step process, the impact of LDA pretreatment on the actual incidence of secondary malignancy needs further validation in animal models. The genome-protective effect of LDA that we have revealed supports its potential use as a strategy to reduce the development of radiation-induced secondary malignances such as MDS and AML. Disclosures Ha: Protectum Oncology: Current Employment, Current equity holder in private company.


2021 ◽  
Vol 11 (4) ◽  
pp. 286
Author(s):  
Chun-Chieh Chan ◽  
Ya-Yun Hsiao

Reactive oxygen species (ROS) play an essential role in radiation-induced indirect actions. In terms of DNA damage, double strand breaks (DSBs) have the greatest effects on the repair of DNA damage, cell survival and transformation. This study evaluated the biological effects of the presence of ROS and oxygen on DSB induction and mutation frequency. The relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) of 62 MeV therapeutic proton beams and 3.31 MeV helium ions were calculated using Monte Carlo damage simulation (MCDS) software. Monte Carlo excision repair (MCER) simulations were used to calculate the repair outcomes (mutation frequency). The RBE values of proton beams decreased to 0.75 in the presence of 0.4 M dimethylsulfoxide (DMSO) and then increases to 0.9 in the presence of 2 M DMSO while the RBE values of 3.31 MeV helium ions increased from 2.9 to 5.7 (0‒2 M). The mutation frequency of proton beams also decreased from 0.008‒0.065 to 0.004‒0.034 per cell per Gy by the addition of 2 M DMSO, indicating that ROS affects both DSB induction and repair outcomes. These results show that the combined use of DMSO in normal tissues and an increased dose in tumor regions increases treatment efficiency.


1982 ◽  
Vol 90 (3) ◽  
pp. 479 ◽  
Author(s):  
James V. Wierowski ◽  
Rolland R. Thomas ◽  
Paul Ritter ◽  
Kenneth T. Wheeler

Sign in / Sign up

Export Citation Format

Share Document