Thracians and Greeks in the North Aegean

Author(s):  
Despoina Tsiafaki
Keyword(s):  
Author(s):  
Ilias Lazos ◽  
Sotirios Sboras ◽  
Christos Pikridas ◽  
Spyros Pavlides ◽  
Alexandros Chatzipetros

2020 ◽  
Vol 12 (24) ◽  
pp. 10420
Author(s):  
Ioannis Chatziioannou ◽  
Efthimios Bakogiannis ◽  
Charalampos Kyriakidis ◽  
Luis Alvarez-Icaza

One of the biggest challenges of our time is climate change. Every day, at different places of the world, the planet sends alarming messages about the enormous transformations it is experiencing due to human-based activities. The latter are responsible for changing weather patterns that threaten food production, energy production and energy consumption, the desertification of land, the displacement of people and animals because of food and water shortages due to the reductions in rainfall, natural disasters and rising sea levels. The effects of climate change affect us all, and if drastic measures are not considered in a timely manner, it will be more difficult and costly to adapt to the aforementioned effects in the future. Considering this context, the aim of this work is to implement a prospective study/structural analysis to the identified sectors of a regional plan of adaptation to climate change so as to promote the resilience of the region against the negative phenomena generated by the climate crisis. This was achieved in two steps: first, we identified the relationships between the strategic sectors of the plan and organized them in order of importance. Second, we assessed the effectiveness of several public policies oriented towards a city’s resilience according to their impact upon the strategic sectors of the plan and the co-benefits generated by their implementation for society. The results highlight that the most essential sectors for the mitigation of climate change are flood risk management, built environment, forest ecosystem management, human health, tourism and rise in sea level. As a consequence, the most important measures for the resilience of the North Aegean Region against climate change are the ones related to the preparation of strategic master plans for flood protection projects.


2002 ◽  
Vol 3 (1) ◽  
pp. 5 ◽  
Author(s):  
V. ZERVAKIS ◽  
D. GEORGOPOULOS

The combination of two research projects offered us the opportunity to perform a comprehensive study of the seasonal evolution of the hydrological structure and the circulation of the North Aegean Sea, at the northern extremes of the eastern Mediterranean. The combination of brackish water inflow from the Dardanelles and the sea-bottom relief dictate the significant differences between the North and South Aegean water columns. The relatively warm and highly saline South Aegean waters enter the North Aegean through the dominant cyclonic circulation of the basin. In the North Aegean, three layers of distinct water masses of very different properties are observed: The 20-50 m thick surface layer is occupied mainly by Black Sea Water, modified on its way through the Bosphorus, the Sea of Marmara and the Dardanelles. Below the surface layer there is warm and highly saline water originating in the South Aegean and the Levantine, extending down to 350-400 m depth. Below this layer, the deeper-than-400 m basins of the North Aegean contain locally formed, very dense water with different θ /S characteristics at each subbasin. The circulation is characterised by a series of permanent, semi-permanent and transient mesoscale features, overlaid on the general slow cyclonic circulation of the Aegean. The mesoscale activity, while not necessarily important in enhancing isopycnal mixing in the region, in combination with the very high stratification of the upper layers, however, increases the residence time of the water of the upper layers in the general area of the North Aegean. As a result, water having out-flowed from the Black Sea in the winter, forms a separate distinct layer in the region in spring (lying between “younger” BSW and the Levantine origin water), and is still traceable in the water column in late summer.


2017 ◽  
Vol 50 (3) ◽  
pp. 1583
Author(s):  
V. Saltogianni ◽  
M. Gianniou ◽  
T. Taymaz ◽  
S. Yolsal-Çevikbilen ◽  
S. Stiros

A strong earthquake (Mw 6.9) on 24 May 2014 ruptured the North Aegean Trough (NAT) in Greece, west of the North Anatolian Fault Zone (NAFZ). In order to provide unbiased constrains of the rupture process and fault geometry of the earthquake, seismological and geodetic data were analyzed independently. First, based on teleseismic long-period P- and SH- waveforms a point-source solution yielded dominantly right-lateral strike-slip faulting mechanism. Furthermore, finite fault inversion of broad-band data revealed the slip history of the earthquake. Second, GPS slip vectors derived from 11 permanent GPS stations uniformly distributed around the meizoseismal area of the earthquake indicated significant horizontal coseismic slip. Inversion of GPS-derived displacements on the basis of Okada model and using the new TOPological INVersion (TOPINV) algorithm permitted to model a vertical strike slip fault, consistent with that derived from seismological data. Obtained results are consistent with the NAT structure and constrain well the fault geometry and the dynamics of the 2014 earthquake. The latter seems to fill a gap in seismicity along the NAT in the last 50 years, but seems not to have a direct relationship with the sequence of recent faulting farther east, along the NAFZ.


2017 ◽  
Vol 50 (1) ◽  
pp. 374
Author(s):  
V. Savva ◽  
P. Tserolas ◽  
A. Maravelis ◽  
N. Bourli ◽  
A. Zelilidis

A total of 27 samples of the Moschopotamos area lignite-bearing strata were studied in regard of their geochemical and sedimentary characteristics. Organic content and calcium carbonate evaluation, sieve analysis and micropaleontological observations were used and combined to investigate the paleoenvironment and the depositional conditions of the study area. TOC analysis showed that organic matter values range from 0.07% up to 13.42% with an average of ~3.26 %. The high average of organic carbon content indicates a promising basis for the sediments’ source rock potential, inquiring further and thorough examination. CaCO3 measurements present a range between 4% and 23%. A comparison between TOC-CaCO3 content throughout the stratigraphic column presented certain synchronous and inverse trends, due to alterations of the depositional conditions. This study provides new insights for the understanding of the broader Axios-Thermaikos basin, and depositional conditions in the North Aegean area.


2021 ◽  
Vol 22 (3) ◽  
pp. 653
Author(s):  
ATHANASIOS GKANASOS ◽  
EUDOXIA SCHISMENOU ◽  
KOSTAS TSIARAS ◽  
STYLIANOS SOMARAKIS ◽  
MARIANNA GIANNOULAKI ◽  
...  

We present the development of a 3D full-lifecycle, individual-based model (IBM) for anchovy and sardine, online coupled to an existing hydrodynamic/biogeochemical low-trophic level (LTL) model for the North Aegean Sea. It was built upon an existing 1D model for the same species and area, with the addition of a horizontal movement scheme. In the model, both species evolve from the embryonic stage (egg+yolk sac larva) to the larval, juvenile, and adult stages. Somatic growth is simulated with the use of a “Wisconsin” type bioenergetics model and fish populations with an adaptation of the ‘super individuals’ (SI) approach. For the reference simulation and model calibration, in terms of fish growth and population biomass, the 2000-2010 period was selected. Interannual biomass variability of anchovy was successfully represented by the model, while the simulated biomass of sardine exhibited low variability and did not satisfactorily reproduce the observed interannual variability from acoustic surveys. The spatial distribution of both species’ biomass was in relatively good agreement with field data. Additional single-species simulations revealed that species compete for food resources. Temperature sensitivity experiments showed that both species reacted negatively to a temperature increase. Anchovy, in particular, was more affected since its spawning and larval growth periods largely overlap with the period of maximum yearly temperature and low prey concentration. Finally, simulation experiments using IPCC climatic scenarios showed that the predicted temperature increase and zooplankton concentration decrease in the future will negatively affect anchovy, resulting in sardine prevalence.


2021 ◽  
Author(s):  
Fabien Caroir ◽  
Frank Chanier ◽  
Virginie Gaullier ◽  
Julien Bailleul ◽  
Agnès Maillard-Lenoir ◽  
...  

<p>The Anatolia-Aegean microplate is currently extruding toward the South and the South-West. This extrusion is classically attributed to the southward retreat of the Aegean subduction zone together with the northward displacement of the Arabian plate. The displacement of Aegean-Anatolian block relative to Eurasia is accommodated by dextral motion along the North Anatolian Fault (NAF), with current slip rates of about 20 mm/yr. The NAF is propagating westward within the North Aegean domain where it gets separated into two main branches, one of them bordering the North Aegean Trough (NAT). This particular context is responsible for dextral and normal stress regimes between the Aegean plate and the Eurasian plate. South-West of the NAT, there is no identified major faults in the continuity of the NAF major branch and the plate boundary deformation is apparently distributed within a wide domain. This area is characterised by slip rates of 20 to 25 mm/yr relative to Eurasian plate but also by clockwise rotation of about 10° since ca 4 Myr. It constitutes a major extensional area involving three large rift basins: the Corinth Gulf, the Almiros Basin and the Sperchios-North Evia Gulf. The latter develops in the axis of the western termination of the NAT, and is therefore a key area to understand the present-day dynamics and the evolution of deformation within this diffuse plate boundary area.</p><p>Our study is mainly based on new structural data from field analysis and from very high resolution seismic reflexion profiles (Sparker 50-300 Joules) acquired during the WATER survey in July-August 2017 onboard the R/V “Téthys II”, but also on existing data on recent to active tectonics (i.e. earthquakes distribution, focal mechanisms, GPS data, etc.). The results from our new marine data emphasize the structural organisation and the evolution of the deformation within the North Evia region, SW of the NAT.</p><p>The combination of our structural analysis (offshore and onshore data) with available data on active/recent deformation led us to define several structural domains within the North Evia region, at the western termination of the North Anatolian Fault. The North Evia Gulf shows four main fault zones, among them the Central Basin Fault Zone (CBFZ) which is obliquely cross-cutting the rift basin and represents the continuity of the onshore Kamena Vourla - Arkitsa Fault System (KVAFS). Other major fault zones, such as the Aedipsos Politika Fault System (APFS) and the Melouna Fault Zone (MFZ) played an important role in the rift initiation but evolved recently with a left-lateral strike-slip motion. Moreover, our seismic dataset allowed to identify several faults in the Skopelos Basin including a large NW-dipping fault which affects the bathymetry and shows an important total vertical offset (>300m). Finally, we propose an update of the deformation pattern in the North Evia region including two lineaments with dextral motion that extend southwestward the North Anatolian Fault system into the Oreoi Channel and the Skopelos Basin. Moreover, the North Evia Gulf domain is dominated by active N-S extension and sinistral reactivation of former large normal faults.</p>


Sign in / Sign up

Export Citation Format

Share Document