Current Modalities for Imaging the Vascular System

2011 ◽  
Author(s):  
Aoife N. Keeling ◽  
Peter A. Naughton

This review focuses on the noninvasive imaging modalities currently used in the investigation and diagnosis of both arterial and venous disorders, covering both technical factors and clinical applications with a number of case-based examples. Over the last two decades, the most frequent noninvasive imaging techniques used to diagnose and treat vascular pathologies have been duplex ultrasonography, computed tomography, and magnetic resonance angiography. Multidetector computed tomograpic angiography is also described. More than three dozen pictures depict various imaging techniques of patients. This review contains 70 references.

2018 ◽  
pp. 75-88
Author(s):  
Daniel C. O’Brien ◽  
Junjuian Huang ◽  
Scott A. Resnick

Minimally invasive interventional radiographic procedures rely on many of the same imaging techniques as are used in diagnostic studies. This chapter describes the imaging modalities most commonly utilized by the interventional radiologist intraprocedurally. These include fluoroscopy, digital subtraction angiography (DSA), sonographic techniques for percutaneous interventions and intravascular ultrasound, and computed tomography (CT) and cone beam CT (CBCT). Imaging techniques used adjunctively in the procedure planning and follow-up phases are also briefly reviewed, including multidetector CT angiography, magnetic resonance angiography (MRA), and sonographic vascular evaluation. Specific interventions are mentioned throughout as a means of illustrating the clinical utilities of these imaging techniques, although specific procedural considerations are discussed more thoroughly elsewhere.


2015 ◽  
Vol 3 (2) ◽  
pp. 224-230 ◽  
Author(s):  
Detelina Valchkova Lukanova ◽  
Nadelin Krasimirov Nikolov ◽  
Kameliya Zaharieva Genova ◽  
Mario Draganov Stankev ◽  
Elisaveta Valcheva Georgieva

BACKGROUND: The stroke is leading cause of death and severe disability worldwide. Atherosclerosis is responsible for over 30% of all ischemic strokes. It has been recently discovered that plaque morphology may help predict the clinical behavior of carotid atherosclerosis and determine the risk of stroke. The noninvasive imaging techniques have been developed to evaluate the vascular wall in an attempt to identify “vulnerable plaques”.AIM: The purpose is to investigate the diagnostic accuracy of ultrasound, multidetector computed tomography and magnetic resonance imaging in the identification of plaque components associated with plaque vulnerability.MATERIAL AND METHODS: One hundred patients were admitted for carotid endarterectomy for high grade carotid stenosis. We defined the diagnostic value of B-mode ultrasound of carotid plaque in a half, and the accuracy of multidetector computed tomography and magnetic resonance imaging, in the other group, for detection of unstable carotid plaque. The reference standard was histology.RESULTS: Sensitivity of ultrasound, multidetector computed tomography and magnetic resonance imaging is 94%, 83% and 100%, and the specificity is 93%, 73% and 89% for detection of unstable carotid plaque.CONCLUSION: The ultrasound has high accuracy for diagnostics of carotid plaque morphology, magnetic resonance imaging has high potential for tissue differentiation and multidetector computed tomography determines precisely degree of stenosis and presence of ulceration and calcifications. The three noninvasive imaging modalities are complementary for optimal evaluation of the morphology of carotid plaque. This will help to determine the risk of stroke and to decide on the best treatment – carotid endarterectomy or carotid stenting.


2020 ◽  
Vol 26 (18) ◽  
pp. 2167-2181
Author(s):  
Tatielle do Nascimento ◽  
Melanie Tavares ◽  
Mariana S.S.B. Monteiro ◽  
Ralph Santos-Oliveira ◽  
Adriane R. Todeschini ◽  
...  

Background: Cancer is a set of diseases formed by abnormal growth of cells leading to the formation of the tumor. The diagnosis can be made through symptoms’ evaluation or imaging tests, however, the techniques are limited and the tumor detection may be late. Thus, pharmaceutical nanotechnology has emerged to optimize the cancer diagnosis through nanostructured contrast agent’s development. Objective: This review aims to identify commercialized nanomedicines and patents for cancer diagnosis. Methods: The databases used for scientific articles research were Pubmed, Science Direct, Scielo and Lilacs. Research on companies’ websites and articles for the recognition of commercial nanomedicines was performed. The Derwent tool was applied for patent research. Results: This article aimed to research on nanosystems based on nanoparticles, dendrimers, liposomes, composites and quantum dots, associated to imaging techniques. Commercialized products based on metal and composite nanoparticles, associated with magnetic resonance and computed tomography, have been observed. The research conducted through Derwent tool displayed a small number of patents using nanotechnology for cancer diagnosis. Among these patents, the most significant number was related to the use of systems based on metal nanoparticles, composites and quantum dots. Conclusion: Although few systems are found in the market and patented, nanotechnology appears as a promising field for the development of new nanosystems in order to optimize and accelerate the cancer diagnosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sang Wha Kim ◽  
Adams Hei Long Yuen ◽  
Cherry Tsz Ching Poon ◽  
Joon Oh Hwang ◽  
Chang Jun Lee ◽  
...  

AbstractDue to their important phylogenetic position among extant vertebrates, sharks are an invaluable group in evolutionary developmental biology studies. A thorough understanding of shark anatomy is essential to facilitate these studies and documentation of this iconic taxon. With the increasing availability of cross-sectional imaging techniques, the complicated anatomy of both cartilaginous and soft tissues can be analyzed non-invasively, quickly, and accurately. The aim of this study is to provide a detailed anatomical description of the normal banded houndshark (Triakis scyllium) using computed tomography (CT) and magnetic resonance imaging (MRI) along with cryosection images. Three banded houndsharks were scanned using a 64-detector row spiral CT scanner and a 3 T MRI scanner. All images were digitally stored and assessed using open-source Digital Imaging and Communications in Medicine viewer software in the transverse, sagittal, and dorsal dimensions. The banded houndshark cadavers were then cryosectioned at approximately 1-cm intervals. Corresponding transverse cryosection images were chosen to identify the best anatomical correlations for transverse CT and MRI images. The resulting images provided excellent detail of the major anatomical structures of the banded houndshark. The illustrations in the present study could be considered as a useful reference for interpretation of normal and pathological imaging studies of sharks.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 772
Author(s):  
Ana Pimentel ◽  
Jordi Bover ◽  
Grahame Elder ◽  
Martine Cohen-Solal ◽  
Pablo Antonio Ureña-Torres

Although frequently silent, mineral and bone disease (MBD) is one of the most precocious complication of chronic kidney disease (CKD) and is omnipresent in patients with CKD stage 5. Its pathophysiology is complex, but basically, disturbances in vitamin D, phosphate, and calcium metabolism lead to a diverse range of clinical manifestations with secondary hyperparathyroidism usually being the most frequent. With the decline in renal function, CKD-MBD may induce microstructural changes in bone, vascular system and soft tissues, which results in macrostructural lesions, such as low bone mineral density (BMD) resulting in skeletal fractures, vascular and soft tissue calcifications. Moreover, low BMD, fractures, and vascular calcifications are linked with increased risk of cardiovascular mortality and all-cause mortality. Therefore, a better characterization of CKD-MBD patterns, beyond biochemical markers, is helpful to adapt therapies and monitor strategies as used in the general population. An in-depth characterization of bone health is required, which includes an evaluation of cortical and trabecular bone structure and density and the degree of bone remodeling through bone biomarkers. Standard radiological imaging is generally used for the diagnosis of fracture or pseudo-fractures, vascular calcifications and other features of CKD-MBD. However, bone fractures can also be diagnosed using computed tomography (CT) scan, magnetic resonance (MR) imaging and vertebral fracture assessment (VFA). Fracture risk can be predicted by bone densitometry using dual-energy X-ray absorptiometry (DXA), quantitative computed tomography (QTC) and peripheral quantitative computed tomography (pQTC), quantitative ultrasound (QUS) and most recently magnetic resonance micro-imaging. Quantitative methods to assess bone consistency and strength complete the study and adjust the clinical management when integrated with clinical factors. The aim of this review is to provide a brief and comprehensive update of imaging techniques available for the diagnosis, prevention, treatment and monitoring of CKD-MBD.


2017 ◽  
Author(s):  
Gerald W. Staton Jr ◽  
Phuong-Anh T. Duong

Chest imaging techniques are evolving with recent advances in computed tomography, magnetic resonance imaging, and ultrasonography. While conventional radiography remains an important screening tool because of its low relative cost, ease of acquisition, general availability, and familiarity, physicians must understand all techniques so as to provide patients with the most appropriate diagnostic imaging. Consultation with radiologists, use of online clinical decision support, and adherence to national guidelines such as the American College of Radiology Appropriateness Criteria®, can help clinicians make imaging decisions, especially in light of medical imaging risks that are of concern in the medical community and the general population. Choosing appropriate imaging, including whether or not to image, requires careful consideration. This review contains 6 figures, 3 tables, and 6 references. Key Words: Chest Radiographs, Dual-Energy Chest Radiographs, Computed Tomography, High-Resolution Chest Computed Tomography, Multidetector Row Computed Tomography, Computed Tomographic Angiography for Pulmonary Embolism, Magnetic Resonance Imaging, Single-Photon Emission Tomography (SPECT), Ultrasonography 


2021 ◽  
Vol 25 (02) ◽  
pp. 346-354
Author(s):  
Alain G. Blum ◽  
Marnix T. van Holsbeeck ◽  
Stefano Bianchi

AbstractThe unique anatomical characteristics of the thumb offer a broad range of motion and the ability to oppose thumb and finger, an essential function for grasping. The motor function of the thumb and its orientation make it particularly vulnerable to trauma. Pathologic lesions encountered in this joint are varied, and imaging techniques play a crucial role in injury detection and characterization. Despite advances in diagnostic accuracy, acute thumb injuries pose a challenge for the radiologist. The complex and delicate anatomy requires meticulous and technically flawless image acquisition. Standard radiography and ultrasonography are currently the most frequently used imaging techniques. Computed tomography is most often indicated for complex fractures and dislocations, and magnetic resonance imaging may be useful in equivocal cases. In this article, we present the relevant anatomy and imaging techniques of the thumb.


Diagnostics ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 84
Author(s):  
Aman Saini ◽  
Alex Wallace ◽  
Hassan Albadawi ◽  
Sailendra Naidu ◽  
Sadeer Alzubaidi ◽  
...  

Lower extremity peripheral arterial disease (PAD) is a chronic, debilitating disease with a significant global burden. A number of diagnostic imaging techniques exist, including computed tomography angiography (CTA) and contrast-enhanced magnetic resonance angiography (CEMRA), to aid in PAD diagnosis and subsequent treatment planning. Due to concerns of renal toxicity or nephrogenic systemic fibrosis (NSF) for iodinated and gadolinium-based contrasts, respectively, a number of non-enhanced MRA (NEMRA) protocols are being increasingly used in PAD diagnosis. These techniques, including time of flight and phase contrast MRA, have previously demonstrated poor image quality, long acquisition times, and/or susceptibility to artifacts when compared to existing contrast-enhanced techniques. In recent years, Quiescent-Interval Single-Shot (QISS) MRA has been developed to overcome these limitations in NEMRA methods, with promising results. Here, we review the various screening and diagnostic tests currently used for PAD. The various NEMRA protocols are discussed, followed by a comprehensive review of the literature on QISS MRA to date. A particular emphasis is placed on QISS MRA feasibility studies and studies comparing the diagnostic accuracy and image quality of QISS MRA versus other diagnostic imaging techniques in PAD.


Sign in / Sign up

Export Citation Format

Share Document