Trends in Nanotechnology for in vivo Cancer Diagnosis: Products and Patents

2020 ◽  
Vol 26 (18) ◽  
pp. 2167-2181
Author(s):  
Tatielle do Nascimento ◽  
Melanie Tavares ◽  
Mariana S.S.B. Monteiro ◽  
Ralph Santos-Oliveira ◽  
Adriane R. Todeschini ◽  
...  

Background: Cancer is a set of diseases formed by abnormal growth of cells leading to the formation of the tumor. The diagnosis can be made through symptoms’ evaluation or imaging tests, however, the techniques are limited and the tumor detection may be late. Thus, pharmaceutical nanotechnology has emerged to optimize the cancer diagnosis through nanostructured contrast agent’s development. Objective: This review aims to identify commercialized nanomedicines and patents for cancer diagnosis. Methods: The databases used for scientific articles research were Pubmed, Science Direct, Scielo and Lilacs. Research on companies’ websites and articles for the recognition of commercial nanomedicines was performed. The Derwent tool was applied for patent research. Results: This article aimed to research on nanosystems based on nanoparticles, dendrimers, liposomes, composites and quantum dots, associated to imaging techniques. Commercialized products based on metal and composite nanoparticles, associated with magnetic resonance and computed tomography, have been observed. The research conducted through Derwent tool displayed a small number of patents using nanotechnology for cancer diagnosis. Among these patents, the most significant number was related to the use of systems based on metal nanoparticles, composites and quantum dots. Conclusion: Although few systems are found in the market and patented, nanotechnology appears as a promising field for the development of new nanosystems in order to optimize and accelerate the cancer diagnosis.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sang Wha Kim ◽  
Adams Hei Long Yuen ◽  
Cherry Tsz Ching Poon ◽  
Joon Oh Hwang ◽  
Chang Jun Lee ◽  
...  

AbstractDue to their important phylogenetic position among extant vertebrates, sharks are an invaluable group in evolutionary developmental biology studies. A thorough understanding of shark anatomy is essential to facilitate these studies and documentation of this iconic taxon. With the increasing availability of cross-sectional imaging techniques, the complicated anatomy of both cartilaginous and soft tissues can be analyzed non-invasively, quickly, and accurately. The aim of this study is to provide a detailed anatomical description of the normal banded houndshark (Triakis scyllium) using computed tomography (CT) and magnetic resonance imaging (MRI) along with cryosection images. Three banded houndsharks were scanned using a 64-detector row spiral CT scanner and a 3 T MRI scanner. All images were digitally stored and assessed using open-source Digital Imaging and Communications in Medicine viewer software in the transverse, sagittal, and dorsal dimensions. The banded houndshark cadavers were then cryosectioned at approximately 1-cm intervals. Corresponding transverse cryosection images were chosen to identify the best anatomical correlations for transverse CT and MRI images. The resulting images provided excellent detail of the major anatomical structures of the banded houndshark. The illustrations in the present study could be considered as a useful reference for interpretation of normal and pathological imaging studies of sharks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mor Mishkovsky ◽  
Olga Gusyatiner ◽  
Bernard Lanz ◽  
Cristina Cudalbu ◽  
Irene Vassallo ◽  
...  

AbstractGlioblastoma (GBM) is the most aggressive brain tumor type in adults. GBM is heterogeneous, with a compact core lesion surrounded by an invasive tumor front. This front is highly relevant for tumor recurrence but is generally non-detectable using standard imaging techniques. Recent studies demonstrated distinct metabolic profiles of the invasive phenotype in GBM. Magnetic resonance (MR) of hyperpolarized 13C-labeled probes is a rapidly advancing field that provides real-time metabolic information. Here, we applied hyperpolarized 13C-glucose MR to mouse GBM models. Compared to controls, the amount of lactate produced from hyperpolarized glucose was higher in the compact GBM model, consistent with the accepted “Warburg effect”. However, the opposite response was observed in models reflecting the invasive zone, with less lactate produced than in controls, implying a reduction in aerobic glycolysis. These striking differences could be used to map the metabolic heterogeneity in GBM and to visualize the infiltrative front of GBM.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 772
Author(s):  
Ana Pimentel ◽  
Jordi Bover ◽  
Grahame Elder ◽  
Martine Cohen-Solal ◽  
Pablo Antonio Ureña-Torres

Although frequently silent, mineral and bone disease (MBD) is one of the most precocious complication of chronic kidney disease (CKD) and is omnipresent in patients with CKD stage 5. Its pathophysiology is complex, but basically, disturbances in vitamin D, phosphate, and calcium metabolism lead to a diverse range of clinical manifestations with secondary hyperparathyroidism usually being the most frequent. With the decline in renal function, CKD-MBD may induce microstructural changes in bone, vascular system and soft tissues, which results in macrostructural lesions, such as low bone mineral density (BMD) resulting in skeletal fractures, vascular and soft tissue calcifications. Moreover, low BMD, fractures, and vascular calcifications are linked with increased risk of cardiovascular mortality and all-cause mortality. Therefore, a better characterization of CKD-MBD patterns, beyond biochemical markers, is helpful to adapt therapies and monitor strategies as used in the general population. An in-depth characterization of bone health is required, which includes an evaluation of cortical and trabecular bone structure and density and the degree of bone remodeling through bone biomarkers. Standard radiological imaging is generally used for the diagnosis of fracture or pseudo-fractures, vascular calcifications and other features of CKD-MBD. However, bone fractures can also be diagnosed using computed tomography (CT) scan, magnetic resonance (MR) imaging and vertebral fracture assessment (VFA). Fracture risk can be predicted by bone densitometry using dual-energy X-ray absorptiometry (DXA), quantitative computed tomography (QTC) and peripheral quantitative computed tomography (pQTC), quantitative ultrasound (QUS) and most recently magnetic resonance micro-imaging. Quantitative methods to assess bone consistency and strength complete the study and adjust the clinical management when integrated with clinical factors. The aim of this review is to provide a brief and comprehensive update of imaging techniques available for the diagnosis, prevention, treatment and monitoring of CKD-MBD.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jae Heon Kim ◽  
Hong J. Lee ◽  
Yun Seob Song

A reliablein vivoimaging method to localize transplanted cells and monitor their viability would enable a systematic investigation of cell therapy. Most stem cell transplantation studies have used immunohistological staining, which does not provide information about the migration of transplanted cellsin vivoin the same host. Molecular imaging visualizes targeted cells in a living host, which enables determining the biological processes occurring in transplanted stem cells. Molecular imaging with labeled nanoparticles provides the opportunity to monitor transplanted cells noninvasively without sacrifice and to repeatedly evaluate them. Among several molecular imaging techniques, magnetic resonance imaging (MRI) provides high resolution and sensitivity of transplanted cells. MRI is a powerful noninvasive imaging modality with excellent image resolution for studying cellular dynamics. Several types of nanoparticles including superparamagnetic iron oxide nanoparticles and magnetic nanoparticles have been used to magnetically label stem cells and monitor viability by MRI in the urologic field. This review focuses on the current role and limitations of MRI with labeled nanoparticles for tracking transplanted stem cells in urology.


2017 ◽  
Author(s):  
Joshua P Klein

Modern neuroimaging has revolutionized the practice of neurology by allowing visualization and monitoring of evolving pathophysiologic processes. High-resolution magnetic resonance imaging (MRI) can now resolve structural abnormalities on a near-cellular level. Advances in functional imaging can assess the in vivo metabolic, vascular, and functional states of neuronal and glial populations in real time. Given the high density of data obtained from neuroimaging studies, it is essential for the clinician to take an active role in understanding the nature and significance of imaging abnormalities. This chapter reviews computed tomography and MRI techniques (including angiography and advanced sequences), specialized protocols for investigating specific diagnoses, risks associated with imaging, disease-specific imaging findings with general strategies for interpretation, and incidental findings and artifacts. Figures include computed tomography, T1- and T2-weighted signal intensity, diffusion-weighted magnetic resonance imaging, magnetic resonance spectroscopy, imaging in epilepsy and dementia, extra-axial versus intra-axial lesions, typical lesions of multiple sclerosis, spinal imaging, spinal pathology, vascular pathology, intracranial hemorrhage, and common imaging artifacts. Tables list Hounsfield units, patterns of enhancement from imaging, advanced techniques in imaging, magnetic resonance imaging sequences, and the evolution of cerebral infarction and intraparenchymal hemorrhage on magnetic resonance imaging. This review contains 12 figures, 6 tables, and 213 references.


2017 ◽  
Author(s):  
Gerald W. Staton Jr ◽  
Phuong-Anh T. Duong

Chest imaging techniques are evolving with recent advances in computed tomography, magnetic resonance imaging, and ultrasonography. While conventional radiography remains an important screening tool because of its low relative cost, ease of acquisition, general availability, and familiarity, physicians must understand all techniques so as to provide patients with the most appropriate diagnostic imaging. Consultation with radiologists, use of online clinical decision support, and adherence to national guidelines such as the American College of Radiology Appropriateness Criteria®, can help clinicians make imaging decisions, especially in light of medical imaging risks that are of concern in the medical community and the general population. Choosing appropriate imaging, including whether or not to image, requires careful consideration. This review contains 6 figures, 3 tables, and 6 references. Key Words: Chest Radiographs, Dual-Energy Chest Radiographs, Computed Tomography, High-Resolution Chest Computed Tomography, Multidetector Row Computed Tomography, Computed Tomographic Angiography for Pulmonary Embolism, Magnetic Resonance Imaging, Single-Photon Emission Tomography (SPECT), Ultrasonography 


2021 ◽  
Vol 25 (02) ◽  
pp. 346-354
Author(s):  
Alain G. Blum ◽  
Marnix T. van Holsbeeck ◽  
Stefano Bianchi

AbstractThe unique anatomical characteristics of the thumb offer a broad range of motion and the ability to oppose thumb and finger, an essential function for grasping. The motor function of the thumb and its orientation make it particularly vulnerable to trauma. Pathologic lesions encountered in this joint are varied, and imaging techniques play a crucial role in injury detection and characterization. Despite advances in diagnostic accuracy, acute thumb injuries pose a challenge for the radiologist. The complex and delicate anatomy requires meticulous and technically flawless image acquisition. Standard radiography and ultrasonography are currently the most frequently used imaging techniques. Computed tomography is most often indicated for complex fractures and dislocations, and magnetic resonance imaging may be useful in equivocal cases. In this article, we present the relevant anatomy and imaging techniques of the thumb.


Author(s):  
Daniel H. Cortes ◽  
Lachlan J. Smith ◽  
Sung M. Moon ◽  
Jeremy F. Magland ◽  
Alexander C. Wright ◽  
...  

Intervertebral disc degeneration is characterized by a progressive cascade of structural, biochemical and biomechanical changes affecting the annulus fibrosus (AF), nucleus pulposus (NP) and end plates (EP). These changes are considered to contribute to the onset of back pain. It has been shown that mechanical properties of the AF and NP change significantly with degeneration [1,2]. Therefore, mechanical properties have the potential to serve as a biomarker for diagnosis of disc degeneration. Currently, disc degeneration is diagnosed based on the detection of structural and compositional changes using MRI, X-ray, discography and other imaging techniques. These methods, however, do not measure directly the mechanical properties of the extracellular matrix of the disc. Magnetic Resonance Elastography (MRE) is a technique that has been used to measure in vivo mechanical properties of soft tissue by applying a mechanical vibration and measuring displacements with a motion-sensitized MRI pulse sequence [3]. The mechanical properties (e.g., the shear modulus) are calculated from the displacement field using an inverse method. Since the applied displacements are in the order of few microns, fibers may not be stretched enough to remove crimping. Therefore, it is unknown if the anisotropy of the AF due to the contribution of the fibers is detectable using MRE. The objective of this study is twofold: to measure shear properties of AF in different orientations to determine the degree of AF anisotropy observable by MRE, and to identify the contribution of different AF constituents to the measured shear modulus by applying different biochemical treatments.


Author(s):  
A. Busato ◽  
P. Fumene Feruglio ◽  
P.P. Parnigotto ◽  
P. Marzola ◽  
A. Sbarbati

In vivo imaging techniques can be integrated with classical histochemistry to create an actual histochemistry of water. In particular, Magnetic Resonance Imaging (MRI), an imaging technique primarily used as diagnostic tool in clinical/preclinical research, has excellent anatomical resolution, unlimited penetration depth and intrinsic soft tissue contrast. Thanks to the technological development, MRI is not only capable to provide morphological information but also and more interestingly functional, biophysical and molecular. In this paper we describe the main features of several advanced imaging techniques, such as MRI microscopy, Magnetic Resonance Spectroscopy, functional MRI, Diffusion Tensor Imaging and MRI with contrast agent as a useful support to classical histochemistry.


Sign in / Sign up

Export Citation Format

Share Document