scholarly journals Thermal Expansion Coefficients of Unidirectional and Angle Plied Silicon-Carbide Fiber-Reinforced Aluminum Alloys

1985 ◽  
Vol 49 (5) ◽  
pp. 376-381 ◽  
Author(s):  
Sen’ichi Yamada ◽  
Shin’ichi Towata
2006 ◽  
Vol 317-318 ◽  
pp. 177-180 ◽  
Author(s):  
Mabito Iguchi ◽  
Motohiro Umezu ◽  
Masako Kataoka ◽  
Hiroaki Nakamura ◽  
Mamoru Ishii

Ceramics with zero thermal expansion coefficients at room temperature (293K) were investigated. We found the thermal expansion coefficient was controlled by a compounding ratio of lithium aluminum silicate (LAS) and silicon carbide (SiC), which have negative and positive thermal expansion coefficients respectively. Although it was difficult to densify the composite of the LAS and SiC (LAS/SiC) in the sintering process, an addition of nitride improved the sinterability of the LAS/SiC. In order to examine the effect of the nitride additive, at first, the melting point of the LAS with silicon nitride (Si3N4) or aluminum nitride was measured by TG-DTA. The melting point of the LAS decreased with existence of nitride. It is believed that the densification of the LAS/SiC was promoted by the nitride, because the nitride causes the LAS/SiC to form a liquid phase, thereby decreasing the melting point. Next, the lattice constant of the LAS with Si3N4 was measured by XRD and it was verified that the a-axis was longer and the c-axis was shorter than those of the LAS without additive. It is supposed that this phenomenon is due to the substitution of nitrogen for oxygen in the LAS lattice, and the decrease of the melting point of the LAS with nitride seems to be influenced by this substitution of nitrogen.


2008 ◽  
Vol 600-603 ◽  
pp. 517-520 ◽  
Author(s):  
Matthias Stockmeier ◽  
Sakwe Aloysius Sakwe ◽  
Philip Hens ◽  
Peter J. Wellmann ◽  
Rainer Hock ◽  
...  

The thermal expansion of 6H Silicon Carbide with different dopant concentrations of aluminum and nitrogen was determined by lattice parameter measurements at temperatures from 300 K to 1575 K. All samples have a volume of at least 6 x 6 x 6 mm3 to ensure that bulk properties are measured. The measurements were performed with a triple axis diffractometer with high energy x-rays with a photon energy of 60 keV. The values for the thermal expansion coefficients along the a- and c-direction, α11 and α33, are in the range of 3·10-6 K-1 for 300 K and 6·10-6 K-1 for 1550 K. At high temperatures the coefficients for aluminum doped samples are approximately 0.5·10-6 K-1 lower than for the nitrogen doped crystal. α11 and α33 appear to be isotropic.


Sign in / Sign up

Export Citation Format

Share Document