scholarly journals Formulation System of Equations of Motion for Multibody Flexible Structures by Using Object-Oriented Language.

1995 ◽  
Vol 43 (494) ◽  
pp. 143-152
Author(s):  
Hironori FUJII ◽  
Shigeyuki TAKEDA
2000 ◽  
Vol 24 (10) ◽  
pp. 649-661 ◽  
Author(s):  
Mohamed Atef Helal

This paper is mainly concerned with the motion of an incompressible fluid in a slowly rotating rectangular basin. The equations of motion of such a problem with its boundary conditions are reduced to a system of nonlinear equations, which is to be solved by applying the shallow water approximation theory. Each unknown of the problem is expanded asymptotically in terms of the small parameterϵwhich generally depends on some intrinsic quantities of the problem of study. For each order of approximation, the nonlinear system of equations is presented successively. It is worthy to note that such a study has useful applications in the oceanography.


2003 ◽  
Vol 25 (3) ◽  
pp. 170-185
Author(s):  
Dinh Van Phong

The article deals with the problem of consistent initial values of the system of equations of motion which has the form of the system of differential-algebraic equations. Direct treating the equations of mechanical systems with particular properties enables to study the system of DAE in a more flexible approach. Algorithms and examples are shown in order to illustrate the considered technique.


2000 ◽  
Vol 423 ◽  
pp. 275-291 ◽  
Author(s):  
MICHAEL S. LONGUET-HIGGINS

A new system of equations for calculating time-dependent motions of deep-water gravity waves (Balk 1996) is here developed analytically and set in a form suitable for practical applications. The method is fully nonlinear, and has the advantage of essential simplicity. Both the potential and the kinetic energy involve polynomial expressions of low degree in the Fourier coefficients Yn(t). This leads to equations of motion of correspondingly low degree. Moreover the constants in the equations are very simple. In this paper the equations of motion are specialized to standing waves, where the coefficients Yn are all real. Truncation of the series at low values of [mid ]n[mid ], say n < N, leads to ‘partial waves’ with solutions apparently periodic in the time t. For physical applications N must however be large. The method will be applied to the breaking of standing waves by the forming of sharp corners at the crests, and the generation of vertical jets rising from the wave troughs.


Author(s):  
Martin Schulze ◽  
Stefan Dietz ◽  
Bernhard Burgermeister ◽  
Andrey Tuganov ◽  
Holger Lang ◽  
...  

Current challenges in industrial multibody system simulation are often beyond the classical range of application of existing industrial simulation tools. The present paper describes an extension of a recursive order-n multibody system (MBS) formulation to nonlinear models of flexible deformation that are of particular interest in the dynamical simulation of wind turbines. The floating frame of reference representation of flexible bodies is generalized to nonlinear structural models by a straightforward transformation of the equations of motion (EoM). The approach is discussed in detail for the integration of a recently developed discrete Cosserat rod model representing beamlike flexible structures into a general purpose MBS software package. For an efficient static and dynamic simulation, the solvers of the MBS software are adapted to the resulting class of MBS models that are characterized by a large number of degrees of freedom, stiffness, and high frequency components. As a practical example, the run-up of a simplified three-bladed wind turbine is studied where the dynamic deformations of the three blades are calculated by the Cosserat rod model.


Author(s):  
Brian J. Olson ◽  
Steve W. Shaw ◽  
Christophe Pierre

This paper investigates the use of order-tuned absorbers to attenuate vibrations of flexible blades in a bladed disk assembly subjected to engine order excitation. The blades are modeled by a cyclic chain of N oscillators, and a single vibration absorber is fitted to each blade. These absorbers exploit the centrifugal field arising from rotation so that they are tuned to a given order of rotation, rather than to a fixed frequency. A standard change of coordinates based on the cyclic symmetry of the system essentially decouples the governing equations of motion, yielding a closed form solution for the steady-state response of the overall system. These results show that optimal reduction of blade vibrations is achieved by tuning the absorbers to the excitation order n, but that the resulting system is highly sensitive to small perturbations. Intentional detuning (meaning that the absorbers are slightly over- or under-tuned relative to n) can be implemented to improve the robustness of the design. It is shown that by slightly undertuning the absorbers there are no system resonances near the excitation order of interest and that the resulting system is robust to mistuning (i.e., small random uncertainties in the system parameters) of the absorbers and/or blades. These results offer a basic understanding of the dynamics of a bladed disk assembly fitted with order-tuned vibration absorbers, and serve as a first step to the investigation of more realistic models, where, for example, imperfections and nonlinear effects are considered, and multi-DOF and general-path absorbers are employed.


1996 ◽  
Vol 118 (4) ◽  
pp. 558-566 ◽  
Author(s):  
O. Cuvalci ◽  
A. Ertas

The dynamic response of a beam-tip mass-pendulum system subjected to a sinusoidal excitation is investigated. A simple pendulum mounted to a tip mass of a beam is used as a vibration absorber. The nonlinear equations of motion are developed to investigate the autoparametric interaction between the first two modes of the system. The nonlinear terms appear due to the curvature of the beam and the coupling effect between the beam and pendulum. Complete energy transfer between modes is shown to occur when the beam frequency is twice the pendulum frequency. Experimental results are compared with a theoretical solution obtained using numerical integration. The experimental results are in qualitative agreement with the theory.


2009 ◽  
Vol 18 (04) ◽  
pp. 621-634 ◽  
Author(s):  
L. ARTURO UREÑA-LÓPEZ ◽  
MAYRA J. REYES-IBARRA

We review the attractor properties of the simplest chaotic model of inflation, in which a minimally coupled scalar field is endowed with a quadratic scalar potential. The equations of motion in a flat Friedmann–Robertson–Walker universe are written as an autonomous system of equations, and the solutions of physical interest appear as critical points. This new formalism is then applied to the study of inflation dynamics, in which we can go beyond the known slow-roll approximation.


Author(s):  
Amir Lotfi-Gaskarimahalle ◽  
Christopher D. Rahn

This paper investigates semi-active vibration control using Fluidic Flexible Matrix Composites (F2MC) as variable stiffness components of flexible structures. The stiffness of F2MC tubes can be dynamically switched from soft to stiff by opening and closing an on/off valve. Fiber reinforcement of the F2MC tube changes the internal volume when externally loaded. With an open valve, the fluid in the tube is free to move in or out of the tube, so the stiffness is low. When the valve is closed, the high bulk modulus fluid resists volume change and produces high stiffness. The equations of motion of an F2MC-mass system is derived using a 3D elasticity model and the energy method. The stability of the unforced dynamic system is proven using a Lyapunov approach. To capture the important system parameters, nondimensional full order and reduced order models are developed. A Zero Vibration (ZV) state switch technique is introduced that suppresses vibration in finite time, and is compared to conventional Skyhook semiactive control. The ITAE performance of the controllers is optimized by adjusting the open valve flow coefficient. Simulation results show that the optimal ZV controller outperforms the optimal Skyhook controller by 13% and 60% for impulse and step response, respectively.


Sign in / Sign up

Export Citation Format

Share Document