scholarly journals Risk Prediction of Cardiovascular Disease in Type 2 Diabetes: A risk equation from the Swedish National Diabetes Register

Diabetes Care ◽  
2008 ◽  
Vol 31 (10) ◽  
pp. 2038-2043 ◽  
Author(s):  
J. Cederholm ◽  
K. Eeg-Olofsson ◽  
B. Eliasson ◽  
B. Zethelius ◽  
P. M. Nilsson ◽  
...  
Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Eun Pyo Hong ◽  
Seong Gu Heo ◽  
Ji Wan Park

Personalized risk prediction for diabetic cardiovascular disease (DCVD) is at the core of precision medicine in type 2 diabetes (T2D). We first identified three marker sets consisting of 15, 47, and 231 tagging single nucleotide polymorphisms (tSNPs) associated with DCVD using a linear mixed model in 2378 T2D patients obtained from four population-based Korean cohorts. Using the genetic variants with even modest effects on phenotypic variance, we observed improved risk stratification accuracy beyond traditional risk factors (AUC, 0.63 to 0.97). With a cutoff point of 0.21, the discrete genetic liability threshold model consisting of 231 SNPs (GLT231) correctly classified 87.7% of 2378 T2D patients as high or low risk of DCVD. For the same set of SNP markers, the GLT and polygenic risk score (PRS) models showed similar predictive performance, and we observed consistency between the GLT and PRS models in that the model based on a larger number of SNP markers showed much-improved predictability. In silico gene expression analysis, additional information was provided on the functional role of the genes identified in this study. In particular, HDAC4, CDKN2B, CELSR2, and MRAS appear to be major hubs in the functional gene network for DCVD. The proposed risk prediction approach based on the liability threshold model may help identify T2D patients at high CVD risk in East Asian populations with further external validations.


2012 ◽  
Vol 4 (3) ◽  
pp. 181 ◽  
Author(s):  
Tom Robinson ◽  
C Raina Elley ◽  
Sue Wells ◽  
Elizabeth Robinson ◽  
Tim Kenealy ◽  
...  

INTRODUCTION: New Zealand (NZ) guidelines recommend treating people for cardiovascular disease (CVD) risk on the basis of five-year absolute risk using a NZ adaptation of the Framingham risk equation. A diabetes-specific Diabetes Cohort Study (DCS) CVD predictive risk model has been developed and validated using NZ Get Checked data. AIM: To revalidate the DCS model with an independent cohort of people routinely assessed using PREDICT, a web-based CVD risk assessment and management programme. METHODS: People with Type 2 diabetes without pre-existing CVD were identified amongst people who had a PREDICT risk assessment between 2002 and 2005. From this group we identified those with sufficient data to allow estimation of CVD risk with the DCS models. We compared the DCS models with the NZ Framingham risk equation in terms of discrimination, calibration, and reclassification implications. RESULTS: Of 3044 people in our study cohort, 1829 people had complete data and therefore had CVD risks calculated. Of this group, 12.8% (235) had a cardiovascular event during the five-year follow-up. The DCS models had better discrimination than the currently used equation, with C-statistics being 0.68 for the two DCS models and 0.65 for the NZ Framingham model. DISCUSSION: The DCS models were superior to the NZ Framingham equation at discriminating people with diabetes who will have a cardiovascular event. The adoption of a DCS model would lead to a small increase in the number of people with diabetes who are treated with medication, but potentially more CVD events would be avoided. KEYWORDS: Cardiovascular disease; diabetes; prevention; risk assessment; reliability and validity


Diabetes Care ◽  
2018 ◽  
Vol 41 (9) ◽  
pp. 2010-2018 ◽  
Author(s):  
Stephanie H. Read ◽  
Merel van Diepen ◽  
Helen M. Colhoun ◽  
Nynke Halbesma ◽  
Robert S. Lindsay ◽  
...  

2011 ◽  
Vol 93 (2) ◽  
pp. 276-284 ◽  
Author(s):  
Björn Zethelius ◽  
Björn Eliasson ◽  
Katarina Eeg-Olofsson ◽  
Ann-Marie Svensson ◽  
Soffia Gudbjörnsdottir ◽  
...  

JAMIA Open ◽  
2020 ◽  
Author(s):  
Jackie Szymonifka ◽  
Sarah Conderino ◽  
Christine Cigolle ◽  
Jinkyung Ha ◽  
Mohammed Kabeto ◽  
...  

Abstract Objective Electronic health records (EHRs) have become a common data source for clinical risk prediction, offering large sample sizes and frequently sampled metrics. There may be notable differences between hospital-based EHR and traditional cohort samples: EHR data often are not population-representative random samples, even for particular diseases, as they tend to be sicker with higher healthcare utilization, while cohort studies often sample healthier subjects who typically are more likely to participate. We investigate heterogeneities between EHR- and cohort-based inferences including incidence rates, risk factor identifications/quantifications, and absolute risks. Materials and methods This is a retrospective cohort study of older patients with type 2 diabetes using EHR from New York University Langone Health ambulatory care (NYULH-EHR, years 2009–2017) and from the Health and Retirement Survey (HRS, 1995–2014) to study subsequent cardiovascular disease (CVD) risks. We used the same eligibility criteria, outcome definitions, and demographic covariates/biomarkers in both datasets. We compared subsequent CVD incidence rates, hazard ratios (HRs) of risk factors, and discrimination/calibration performances of CVD risk scores. Results The estimated subsequent total CVD incidence rate was 37.5 and 90.6 per 1000 person-years since T2DM onset in HRS and NYULH-EHR respectively. HR estimates were comparable between the datasets for most demographic covariates/biomarkers. Common CVD risk scores underestimated observed total CVD risks in NYULH-EHR. Discussion and conclusion EHR-estimated HRs of demographic and major clinical risk factors for CVD were mostly consistent with the estimates from a national cohort, despite high incidences and absolute risks of total CVD outcome in the EHR samples.


Sign in / Sign up

Export Citation Format

Share Document