scholarly journals Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes.

2003 ◽  
Vol 43 (3) ◽  
pp. 438-446 ◽  
Author(s):  
Georg Frommeyer ◽  
Udo Brüx ◽  
Peter Neumann
2021 ◽  
Vol 8 (8) ◽  
pp. 210399
Author(s):  
Nannan Xiao ◽  
Martin Felhofer ◽  
Sebastian J. Antreich ◽  
Jessica C. Huss ◽  
Konrad Mayer ◽  
...  

Nutshells achieve remarkable properties by optimizing structure and chemistry at different hierarchical levels. Probing nutshells from the cellular down to the nano- and molecular level by microchemical and nanomechanical imaging techniques reveals insights into nature's packing concepts. In walnut and pistachio shells, carbohydrate and lignin polymers assemble to form thick-walled puzzle cells, which interlock three-dimensionally and show high tissue strength. Pistachio additionally achieves high-energy absorption by numerous lobes interconnected via ball-joint-like structures. By contrast, the three times more lignified walnut shells show brittle LEGO-brick failure, often along the numerous pit channels. In both species, cell walls (CWs) show distinct lamellar structures. These lamellae involve a helicoidal arrangement of cellulose macrofibrils as a recurring motif. Between the two nutshell species, these lamellae show differences in thickness and pitch angle, which can explain the different mechanical properties on the nanolevel. Our in-depth study of the two nutshell tissues highlights the role of cell form and their interlocking as well as plant CW composition and structure for mechanical protection. Understanding these plant shell concepts might inspire biomimetic material developments as well as using walnut and pistachio shell waste as sustainable raw material in future applications.


2016 ◽  
Vol 725 ◽  
pp. 60-65
Author(s):  
Asuka Hayashi ◽  
Takeshi Iwamoto

TRIP steel possesses high strength and excellent ductility. In addition, it is possible that TRIP steel indicates high energy absorption so that TRIP steel is expected to apply to automotive members. To design the members made of TRIP steel, it is important to clarify its energy absorption characteristic at various deformation rates. In the previous study, the energy absorption characteristic of TRIP steel is evaluated by J-integral under quasi-static to dynamic condition by using a thick specimen based on ASTM standard. However, by using such thick specimens, it is difficult to conduct the three-point bending test under impact condition because of high ductility in TRIP steel. A small punch (SP) test is the experimental method which can evaluate fracture parameters such as J-integral. By using a conventional use of small specimen in the SP test, it is possible to evaluate J-integral of TRIP steel under impact deformation. In this study, energy absorption characteristic of TRIP steel is investigated by SP test under different deflection rates. Then, the relationship between the values of J-integral obtained by previously conducted three-point bending test and the SP test of TRIP steel is discussed.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402092413
Author(s):  
Lai Hu ◽  
Jun Zha ◽  
Yaolong Chen

This study conducted an investigation on transverse quasi-static three-point loading on a circular aluminum tube and its characteristic plastic failure and energy-absorption behaviors. The thin wall thickness of the aluminum tube, the various diameter and thickness ratios ( D/ t) of the tube, and the tube length are important control parameters. Experimental data for different span length and thickness ratios of the tube were characterized and correlated to its plastic collapse behavior. A simulation model by computational analysis using ANSYS was also conducted as a comparative study. The results of the study found that transverse three-point bend loading (ASTM F290) of a circular aluminum tube underwent different stages of deformation, from initial pure crumpling to crumpling and bending, and finally, structural rupture. The results of master curve analysis found that regions of high energy absorption and low energy absorption can be classified with respect to the characteristic tubular deformation. High energy absorption deformation is correlated with a short span length and higher D/ t ratio, and vice versa for low energy absorption deformation of the circular aluminum tube. Simulation analysis also predicted similar characteristic trends of deformation behavior in the experiment, with a less than 3% average coefficient of variation.


Author(s):  
Y. Yang ◽  
S. Terada ◽  
M. Okano ◽  
A. Nakai ◽  
H. Hamada

As an energy absorption member, fiber-reinforced composites (FRPs) are more favorable because they are light in weight and possess better energy absorption capabilities as compared to their metal counterparts. However, the energy absorbing mechanisms of FRP are complicated owning to the multi-micro fractures. Therefore, in this study, the designs of FRP tubes were carried out with considerations directed at the energy absorbing mechanisms. Two methods based on the design of the energy absorbed by bending of the fronds (Ubend) and the energy absorbed by fiber fractures (Uff) are concentrated. Here the bending behavior of frond can be considered as the bending beam by an external force. And it is found that Ubend is affected directly by the inertia moment I, which is affect by the geometry. Therefore, FRP tubes were fabricated to have a geometry combined with a bigger I. Additional, in order to get more fiber fractures to get an increased Uff, the design of bending stress, σ, was carried out. FRP tubes bending towards one side only rather than two sides are proposed to get bending fronds with a double thicker thickness, which in turn led to high stresses, many fiber fractures and high energy absorption.


Sign in / Sign up

Export Citation Format

Share Document