scholarly journals Fate of Nitrogen and Sulfur during Reduction Process of Carbon-containing Pellet Prepared by Vapor Deposition of Gaseous-Tar and the Influences of the Hetero Elements on the Reduction Behavior and Crushing Strength

2018 ◽  
Vol 58 (3) ◽  
pp. 460-468 ◽  
Author(s):  
Yuuki Mochizuki ◽  
Naoto Tsubouchi ◽  
Tomohiro Akiyama
2007 ◽  
Vol 990 ◽  
Author(s):  
Hideaki Zama ◽  
Yuuji Nishimura ◽  
Michiyo Yago ◽  
Mikio Watanabe

ABSTRACTChemical vapor deposition (CVD) of copper using both a novel Cu(II) β-diketonate source and hydrogen reduction process was studied to fill contact vias with the smallest diameter in the 32nm and more advanced generation chip. Pure Cu films were grown under the condition with the product of hydrogen partial pressure and H2/Cu source molar ratio being over 1,000,000. We succeeded in filling the 40-nm-diameter contact vias by optimizing the growth condition of the Cu-CVD in both substrate temperatures and reaction pressures.


2011 ◽  
Vol 1284 ◽  
Author(s):  
Alicja Bachmatiuk ◽  
Felix Börrnert ◽  
Imad Ibrahim ◽  
Bernd Büchner ◽  
Mark H. Rümmeli

ABSTRACTThe formation of carbon nanostructures using silica nanoparticles from quartz substrates as a catalyst in an aerosol assisted chemical vapor deposition process was examined. The silica particles are reduced to silicon carbide via a carbothermal reduction process. The recyclability of the explored quartz substrates is also presented. The addition of triethyl borate improves the efficiency of the carbothermal reduction process and carbon nanotubes formation. Moreover, the addition of hydrogen during the chemical vapor deposition leads to the helical carbon nanostructures formation.


2016 ◽  
Vol 30 (8) ◽  
pp. 6233-6239 ◽  
Author(s):  
Yuuki Mochizuki ◽  
Megumi Nishio ◽  
Jun Ma ◽  
Naoto Tsubouchi ◽  
Tomohiro Akiyama

2021 ◽  
Author(s):  
Raed H. Althomali ◽  
Khalid A. Alamry ◽  
Mahmoud Hussein Abdo ◽  
Shams H. Abdel-Hafez

Abstract In this study, the catalytic reduction behavior of carboxylated alginic acid derivatives has been investigated against the harmful organic dyes including Methyl Orange (MO) and Congo Red (CR). Alginic acid was firstly oxidized through an easy addition of KMnO4 as an oxidizing agent. A carboxylated alginic acid (CAA) has been interacted with selected metal ions (Sn, Fe, Ni, and Zr) through coordination bonds at the value of pH = 4 to form the corresponding metal complexes namely: Sn-CAA, Fe-CAA, Ni-CAA and Zr-CAA. The consistency of the coordination was confirmed by several spectroscopic techniques including FT-IR, XRD, SEM, and EDX. The catalytic reduction of these metal ion-based products was carried out against MO and CR in the presence of NaBH4 as a reducing agent under UV irradiation. All catalysts based metal complexes showed enhanced catalytic reduction against CR compared to MO. Among all those mentioned metal complexes Sn-CAA showed the best catalytic reduction of these dyes. The time taken by the Sn-CAA for CR, and MO is 5 and 7min respectively. Ni-CAA was classified as the second efficient product against both dyes, where the reduction process took 20 and 9 min respectively. The other two catalysts took a long time for CR and MO reduction. Zr-CAA showed more than 80 % reduction of only CR dye within 20 min. Whereas, Fe-CAA did not show any significant sign of reduction against both the dyes after the same time. The order of higher catalytic reduction was illustrated as: Sn-CAA > Ni-CAA > Zr-CAA = Fe-CAA.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 852 ◽  
Author(s):  
He Guo ◽  
Xin Jiang ◽  
Fengman Shen ◽  
Haiyan Zheng ◽  
Qiangjian Gao ◽  
...  

The effects of SiO2 content on the compressive strength, reduction behavior and melting-dripping properties of the pellets were investigated under experimental conditions. The experimental results indicated that the compressive strength of pellets gradually decreased with increasing SiO2 content, mainly because the pellets with high SiO2 had poor crystallization capacity, a more liquid phase and more pores. With increasing SiO2 content from 2.19 wt% to 8.13 wt%, the reduction degree of pellets descreased due to the generation of 2FeO·SiO2. Based on the morphology analysis, inside of the pellets, 2FeO·SiO2 caused the compact structure and fewer microspores with increasing SiO2 content, which was unfavorable for the reduction process and resulted in the decrease of the reduction degree. Also, increasing the SiO2 content had negative effects on the melting-dripping properties of pellets. The melting-dripping properties can be improved by adding some sinter with high basicity in the mixed burden. The current work established the relation between SiO2 content and reduction-melting behavior of pellets, which can provide theoretical and technical support for the effective utilization of pellets with different SiO2 content in blast furnace process.


2020 ◽  
Vol 117 (2) ◽  
pp. 207
Author(s):  
Jiantao Ju ◽  
Chenmei Tang ◽  
Xiangdong Xing ◽  
Shan Ren ◽  
Guangheng Ji

To provide theoretical basis for the production of pellets, the effect of BaSO4 in the range of 0 to 5.0% on properties of pellets was studied under experimental conditions. The influence mechanism of BaSO4 on the compressive strength of preheated pellets as well as roasted pellets and reduction behavior of roasted pellets was investigated by means of scanning electron microscopy-energy dispersive spectrometer (SEM-EDS). From the results, it can be observed that the compressive strength of preheated pellets varies slightly whereas roasted pellets has a great change when BaSO4 content increases from 0 to 5%. The compressive strength of roasted pellets initially increases then decreases, which reaches the peak value of 3411 N with BaSO4 content of 1.5%. The reduction degree enhances from 80.7 to 97.9% and FeO content reduces from 2.33 to 1.57% with increasing BaSO4 content from 0 to 5.0%. The degree of polycrystalline of hematite improves and the hole size increases obviously when BaSO4 content varies from 0 to 1.5%. The crystallization of hematite decreases and the holes whose distribution is uneven increases when BaSO4 content is more than 1.5%. In reduction process, the wustite reduces and metallic iron increases with increasing BaSO4 content from 0 to 5.0%.


2016 ◽  
Vol 142 ◽  
pp. 287-295 ◽  
Author(s):  
Yuuki Mochizuki ◽  
Megumi Nishio ◽  
Naoto Tsubouchi ◽  
Tomohiro Akiyama

2017 ◽  
Vol 888 ◽  
pp. 441-446
Author(s):  
Anis Nadhirah Ismail ◽  
Nur Farhana Diyana Mohd Yunos ◽  
Shamsul Baharin Jamaludin ◽  
Muhammad Asri Idris ◽  
Mohd Hakim Ibrahim ◽  
...  

Generally, the conventional carbon sources such coke/coal are used in EAF steelmaking attributed the highest growth rate in energy consumption. A substitute routes striving to improve energy efficiency by providing auxiliary sources is essential. The unique features such high carbon content, surface area, porosity and low sulphur was available in agricultural waste clearly have the potential to be used as reducing agent in steelmaking process. The present study investigated the reduction behavior of EAF slag and production of metallic iron by reduction process. The carbon materials, coke and palm char (pyrolyzed via chemical activation) were used as reducing agent composite with EAF slag respectively. The reduction reaction was conducted in horizontal tube furnace at different reduction temperatures (1250°C, 1350°C, 1450°C and 1550°C) under argon gas (flow rate 0.01L/min) within 20 minutes. The reduced sample was examined by X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) to understand the reduction behavior of both composite samples. Palm char showed more efficient due to improvement in degree of FeO reduction which was 57.72% compared to coke, 26.72%. The phase movement from iron oxide to iron was influenced by the reduction temperatures. XRD pattern revealed that the metallic iron was initiating appeared at temperature 1250°C and completely reduced at temperature of 1550°C . Predominant peak of metallic iron and the other oxides was clarified by EDS spectra. This study found that palm char has viability to be used as carbon sources in steelmaking applications.


2010 ◽  
Vol 518 (24) ◽  
pp. 7360-7365 ◽  
Author(s):  
Sheng-Chang Wang ◽  
How-Tung Lin ◽  
Pramoda K. Nayak ◽  
Shin-Yun Chang ◽  
Jow-Lay Huang

Sign in / Sign up

Export Citation Format

Share Document