scholarly journals Impact of the Different Friction Coefficients on the Tools on the Mechanics of the Mannesmann 2-roll Tube Piercing

2022 ◽  
Vol 108 (1) ◽  
pp. 29-40
Author(s):  
Meriane Fernandes ◽  
Nabil Marouf ◽  
Pierre Montmitonnet ◽  
Katia Mocellin
2020 ◽  
Vol 13 (1) ◽  
pp. 35-40
Author(s):  
Yongbin Zhang ◽  
Huansheng Cheng ◽  
Junyan Wang

Background: As a successive part, the paper introduces the second mode of abnormal hydrodynamic thrust slider bearings with divergent surface separations registered in the patents, where the boundary slippage is artificially designed both on the stationary surface in the inlet zone and on the whole moving surface. Objective : To introduce a second method for artificially designing the boundary slippage for the formation of abnormal hydrodynamic thrust slider bearings. Methods: The analytical results are presented for the introduced bearings. The performances of the bearings are demonstrated. Result: : In appropriate operating conditions, the introduced bearings can have considerable loadcarrying capacities with low friction coefficients on the scales 10-3 or 10-4. With the weakening of the boundary slippage on the moving surface, the load-carrying capacities of the bearings are all increased, while the friction coefficients of the bearings are all reduced. Conclusion: When the boundary slippage is present both on the stationary surface in the bearing inlet zone and on the whole moving surface, abnormal hydrodynamic thrust slider bearings can be designed with the surface separation in the bearing inlet zone lower than that in the bearing outlet zone. The performances of these bearings are quite satisfactory.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 611
Author(s):  
Yeon-Woong Choe ◽  
Sang-Bo Sim ◽  
Yeon-Moon Choo

In general, this new equation is significant for designing and operating a pipeline to predict flow discharge. In order to predict the flow discharge, accurate determination of the flow loss due to pipe friction is very important. However, existing pipe friction coefficient equations have difficulties in obtaining key variables or those only applicable to pipes with specific conditions. Thus, this study develops a new equation for predicting pipe friction coefficients using statistically based entropy concepts, which are currently being used in various fields. The parameters in the proposed equation can be easily obtained and are easy to estimate. Existing formulas for calculating pipe friction coefficient requires the friction head loss and Reynolds number. Unlike existing formulas, the proposed equation only requires pipe specifications, entropy value and average velocity. The developed equation can predict the friction coefficient by using the well-known entropy, the mean velocity and the pipe specifications. The comparison results with the Nikuradse’s experimental data show that the R2 and RMSE values were 0.998 and 0.000366 in smooth pipe, and 0.979 to 0.994 or 0.000399 to 0.000436 in rough pipe, and the discrepancy ratio analysis results show that the accuracy of both results in smooth and rough pipes is very close to zero. The proposed equation will enable the easier estimation of flow rates.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 962
Author(s):  
Andrzej Marczuk ◽  
Vasily Sysuev ◽  
Alexey Aleshkin ◽  
Petr Savinykh ◽  
Nikolay Turubanov ◽  
...  

Mixing is one of the most commonly used processes in food, animal feed, chemical, cosmetic, etc., industries. It is supposed to provide high-quality homogenous, nutritious mixtures. To provide appropriate mixing of materials while maintaining the process high efficiency and low energy consumption it is crucial to explore and describe the material flow caused by the movement of mixing elements and the contact between particles. The process of mixing is also affected by structural features of the machine components and the mixing chamber, speed of mixing, and properties of the mixed materials, such as the size of particles, moisture, friction coefficients. Thus, modeling of the phenomena that accompany the process of mixing using the above-listed parameters is indispensable for appropriate implementation of the process. The paper provides theoretical power calculations that take into account the material speed change, the impact of the material friction coefficient on the screw steel surface and the impact of the friction coefficient on the material, taking into account the loading height of the mixing chamber and the chamber loading value. Dependencies between the mixer power and the product degree of fineness, rotational speed of screw friction coefficients, the number of windings per length unit, and width of the screw tape have been presented on the basis of a developed model. It has been found that power increases along with an increase in the value of these parameters. Verification of the theoretical model indicated consistence of the predicted power demand with the power demand determined in tests performed on a real object for values of the assumed, effective loading, which was 65–75%.


1988 ◽  
Vol 140 ◽  
Author(s):  
Irwin L. Singer

AbstractAdvances in solid lubricating films for vacuum and high temperature applications are reviewed. Traditional lubricants (e.g. graphite and dichalcogenides) are being improved and new lubricating materials (e.g. amorphous carbons) are being discovered with the aid of recent developments in deposition processes and surface analytical methods. Ion bombardmenttreatments have increased film adhesion, lowered friction coefficients and enhanced the wearlife of MoS2films, as well as created new forms of lubricating carbons (amorphous, polymeric and diamond-like). Composite films and multilayer coating treatments are providing extra protection for surface and films against environmental degradation. Ultralow friction coefficients (<0.01) have been achieved with MoS 2 as well as diamond-like carbon films. Material selection, in some cases (e.g. thin metal films), can nowbe made basedon scientific principles, although many tribomaterials are still being developed by trialand error methods.


Author(s):  
Xiangqin Zhang ◽  
Xueping Zhang ◽  
A. K. Srivastava

To predict the cutting forces and cutting temperatures accurately in high speed dry cutting Ti-6Al-4V alloy, a Finite Element (FE) model is established based on ABAQUS. The tool-chip-work friction coefficients are calculated analytically using the measured cutting forces and chip morphology parameter obtained by conducting the orthogonal (2-D) machining tests. It reveals that the friction coefficients between tool-work are 3∼7 times larger than that between tool-chip, and the friction coefficients of tool-chip-work vary with feed rates. The analysis provides a better reference for the tool-work-chip friction coefficients than that given by literature empirically regardless of machining conditions. The FE model is capable of effectively simulating the high speed dry cutting process of Ti-6Al-4V alloy based on the modified Johnson-Cook model and tool-work-chip friction coefficients obtained analytically. The FE model is further validated in terms of predicted forces and the chip morphology. The predicted cutting force, thrust force and resultant force by the FE model agree well with the experimentally measured forces. The errors in terms of the predicted average value of chip pitch and the distance between chip valley and chip peak are smaller. The FE model further predicts the cutting temperature and residual stresses during high speed dry cutting of Ti-6Al-4V alloy. The maximum tool temperatures exist along the round tool edge, and the residual stress profiles along the machined surface are hook-shaped regardless of machining conditions.


2010 ◽  
Vol 76 (770) ◽  
pp. 2440-2446
Author(s):  
Hisayo DOI ◽  
Sohei NISHIO ◽  
Satoshi GOAN ◽  
Takefumi MIYAMOTO ◽  
Hiroshi UEDA

2014 ◽  
Vol 83 ◽  
pp. 82-97 ◽  
Author(s):  
Ihab Sraj ◽  
Kyle T. Mandli ◽  
Omar M. Knio ◽  
Clint N. Dawson ◽  
Ibrahim Hoteit

Soft Matter ◽  
2022 ◽  
Author(s):  
Aile Sun ◽  
Yinqiao Wang ◽  
Yangrui Chen ◽  
Jin Shang ◽  
Jie Zheng ◽  
...  

We perform a systematic experimental study to investigate the velocity fluctuations in the two-dimensional granular matter of low and high friction coefficients subjected to cyclic shear of a range of...


Sign in / Sign up

Export Citation Format

Share Document