scholarly journals Three-dimensional Characterization and Analysis of Steel Microstructure by Serial Sectioning

2004 ◽  
Vol 90 (4) ◽  
pp. 183-189 ◽  
Author(s):  
Masato ENOMOTO
Author(s):  
Halit Dogan ◽  
Md Mahbub Alam ◽  
Navid Asadizanjani ◽  
Sina Shahbazmohamadi ◽  
Domenic Forte ◽  
...  

Abstract X-ray tomography is a promising technique that can provide micron level, internal structure, and three dimensional (3D) information of an integrated circuit (IC) component without the need for serial sectioning or decapsulation. This is especially useful for counterfeit IC detection as demonstrated by recent work. Although the components remain physically intact during tomography, the effect of radiation on the electrical functionality is not yet fully investigated. In this paper we analyze the impact of X-ray tomography on the reliability of ICs with different fabrication technologies. We perform a 3D imaging using an advanced X-ray machine on Intel flash memories, Macronix flash memories, Xilinx Spartan 3 and Spartan 6 FPGAs. Electrical functionalities are then tested in a systematic procedure after each round of tomography to estimate the impact of X-ray on Flash erase time, read margin, and program operation, and the frequencies of ring oscillators in the FPGAs. A major finding is that erase times for flash memories of older technology are significantly degraded when exposed to tomography, eventually resulting in failure. However, the flash and Xilinx FPGAs of newer technologies seem less sensitive to tomography, as only minor degradations are observed. Further, we did not identify permanent failures for any chips in the time needed to perform tomography for counterfeit detection (approximately 2 hours).


MRS Bulletin ◽  
2008 ◽  
Vol 33 (6) ◽  
pp. 597-602 ◽  
Author(s):  
G. Spanos ◽  
D.J. Rowenhorst ◽  
A.C. Lewis ◽  
A.B. Geltmacher

AbstractThis article first provides a brief review of the status of the subfield of three-dimensional (3D) materials analyses that combine serial sectioning, electron backscatter diffraction (EBSD), and finite element modeling (FEM) of materials microstructures, with emphasis on initial investigations and how they led to the current state of this research area. The discussions focus on studies of the mechanical properties of polycrystalline materials where 3D reconstructions of the microstructure—including crystallographic orientation information—are used as input into image-based 3D FEM simulations. The authors' recent work on a β-stabilized Ti alloy is utilized for specific examples to illustrate the capabilities of these experimental and modeling techniques, the challenges and the solutions associated with these methods, and the types of results and analyses that can be obtained by the close integration of experiments and simulations.


2019 ◽  
Vol 1 (1) ◽  
pp. 11
Author(s):  
Yu.V. Yudin ◽  
A.A. Kuklina ◽  
M.V. Maisuradze ◽  
M.S. Karabanalov

The electron backscatter diffraction method (EBSD) is widely used to studycrystallographic orientational relationships of the steel microstructure constituentsincluding bainite. Nevertheless the fine structure of bainite (subunits, plates) is notinvestigated by this method. In this paper we propose a technique for visualizing ofthe structure of a bainitic steel near-surface layer using the values of Euler anglesobtained by EBSD method. A three-dimensional picture of the bainite fine structure ofthe HY-TUF steel obtained by the proposed technique is in


2019 ◽  
Vol 25 (S2) ◽  
pp. 432-433
Author(s):  
Satya Ganti ◽  
Rachel Reed ◽  
William S. Davis ◽  
Veeraraghavan Sundar

Author(s):  
Mohamad Ghodrati ◽  
Mehdi Ahmadian ◽  
Reza Mirzaeifar

In this paper, the micro-mechanical mechanisms behind the initiation and propagation of rolling contact fatigue (RCF) damages caused by the large traction forces are investigated. This study provides a three-dimensional (3D) model for studying the rolling contact fatigue in rails. Since rolling contact fatigue is highly dependent on the rail’s steel microstructure behavior, a proper 3D approach to capture the microstructure- and orientation-dependent mechanical behavior is required. A precise material model known as crystal plasticity is used for this purpose. Additionally, a cohesive zone approach is implemented to capture the crack initiation and propagation at the grain boundaries. Using the 3D finite element model which is developed for this study, we evaluate the effect of various parameters such as traction forces along the rail, and also the normal forces on the RCF response. The results reveal that the RCF cracks initiate slightly below the rail surface. These cracks start propagating toward the rail surface when the contact force is applied in repeated load cycles. The results also indicate that the depth at which RCF initiates depends on the ratio between the longitudinal traction forces and the normal loads. With larger traction forces, the cracks initiate closer, or at the rail surface, whereas larger normal loads promote the cracks initiation beneath the surface.


2020 ◽  
Vol 49 (9) ◽  
pp. 5190-5195
Author(s):  
Kenichi Ogawa ◽  
Naoya Ogawa ◽  
Ryo Kosaka ◽  
Toshiyuki Isshiki ◽  
Yongzhao Yao ◽  
...  

1968 ◽  
Vol 46 (5) ◽  
pp. 720-722 ◽  
Author(s):  
Rolf Sattler

When floral buds are studied by serial sectioning, the obtained three-dimensional picture of the buds is a reconstruction which involves some theoretical elements. In contrast to this reconstructive method, the described technique permits the direct study of the three-dimensional developmental stages of flowers. Protoderm cells of floral apices and primordial appendages can be demonstrated.


Sign in / Sign up

Export Citation Format

Share Document