Ectodermal and ectomesenchymal marker expression in primary cell lines of complex and compound odontomas: a pilot study

2019 ◽  
Vol 68 (3) ◽  
Author(s):  
David A. Trejo-Remigio ◽  
Luis F. Jacinto-Alemán ◽  
Elba R. Leyva-Huerta ◽  
Bogdan R. Navarro-Bustos ◽  
Javier Portilla-Robertson
1985 ◽  
Vol 5 (4) ◽  
pp. 642-648 ◽  
Author(s):  
J A Small ◽  
D G Blair ◽  
S D Showalter ◽  
G A Scangos

Two plasmids, one containing the simian virus 40 (SV40) genome and the mouse metallothionein I gene and one containing the v-myc gene of avian myelocytomatosis virus MC29, were coinjected into mouse embryos. Of the 13 surviving mice, one, designated M13, contained both myc and SV40 sequences. This mouse developed a cranial bulge identified as a choroid plexus papilloma at 13 weeks and was subsequently sacrificed; tissue samples were taken for further analysis. Primary cell lines derived from these tissues contained both myc and SV40 DNA. No v-myc mRNA could be detected, although SV40 mRNA was present in all of the cell lines tested. T antigen also was expressed in all of the cell lines analyzed. These data suggest that SV40 expression was involved in the abnormalities of mouse M13 and was responsible for the transformed phenotype of the primary cell lines. Primary cell lines from this mouse were atypical in that the population rapidly became progressively more transformed with time in culture based on the following criteria: morphology, growth rate, and the ability to grow in soft agar and in serum-free medium. The data also suggest that factors present in the mouse regulated the ability of SV40 to oncogenically transform most cells and that in vitro culture of cells allowed them to escape those factors.


Author(s):  
Pınar Arslan ◽  
Begum Yurdakok-Dikmen ◽  
Saniye Cevher Ozeren ◽  
Ozgur Kuzukiran ◽  
Ayhan Filazi

Author(s):  
V Rey Vázquez ◽  
L Fernández Nevado ◽  
S Tirados Menéndez ◽  
Ó Estupiñán Sánchez ◽  
R Rodríguez González

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi262-vi262 ◽  
Author(s):  
Noriyuki Kijima ◽  
Daisuke Kanematsu ◽  
Tomoko Shofuda ◽  
Masahiro Nonaka ◽  
Ryoichi Iwata ◽  
...  

Abstract Patient-derived primary cell culture and xenograft are essential tools for translational research for glioblastoma. However, characteristics of each patient derived cell line and xenograft is not extensively studied. In this study, we aim to analyze the characteristics of our glioblastoma patient-derived cell lines and xenografts based on cell surface markers and their differentiation patterns. We have established 20 glioblastoma primary cell culture lines by serum free medium containing EGF and bFGF and found that primary cell culture lines could be classified based on the expression of CD133 and CD44. Four cell lines had high expression of both CD133 and CD44. Eleven cell lines had high expression of only CD44, three cell lines had high expression of only CD133, two cell lines had low expression of both CD133 and CD44. In addition when we induce differentiation, these cell lines showed differentiation to both glial and neuronal differentiation, but differentiation patterns were different depending on each cell line. Four cell lines showed predominant neuronal differentiation and others showed predominant glial differentiation. We next investigated in vivo characteristics of glioblastoma patient derived xenografts from these established cell lines. We have injected these cell lines into NOD/Shi-scid IL2Rγ KO mouse and histopathologically analyzed characteristics of xenografts. Each xenograft well recapitulated histological features of original patients’ tumors and tumor cells remarkably invade through subventricular zone. These results suggest that glioblastoma patient derived primary cell lines and xenografts have different characteristics of cell surface marker expressions and differentiation patterns, thus can classify these cell lines depending on cell surface marker expressions and differentiation patterns. Further analysis is needed to examine the biological importance of the differences in cell surface marker expressions and differentiation patterns.


2015 ◽  
Vol 16 (12) ◽  
pp. 9936-9948 ◽  
Author(s):  
Mustafa El-Khatib ◽  
Carolin Tepe ◽  
Brigitte Senger ◽  
Maxine Dibué-Adjei ◽  
Markus Riemenschneider ◽  
...  

1984 ◽  
Vol 39 (9-10) ◽  
pp. 993-1002 ◽  
Author(s):  
Herbert G. Miltenburger ◽  
Werner L. Naser ◽  
Jeanne P. Harvey ◽  
Jürg Huber ◽  
Alois M. Huger

Abstract We established more than 200 primary cell lines of Cydia pomonella (codling moth). 81 of them were selected and screened for replication of two baculoviruses (from two different subgroups): the Choristoneura murinana NPV and the Cydia pomonella GV. Although all these cell lines had been derived from the same insect species, they varied largely in their response to challenge with the NPV. Most of them showed CPE or produced different amounts of poly-hedra. Interestingly, we also found a few cell lines that were permissive for GV replication. To our knowledge this is the first time that GV replication in cell lines has been obtained. Our results show that cell line properties are most important for baculovirus in vitro replication.


Sign in / Sign up

Export Citation Format

Share Document