scholarly journals Rainwater Harvesting Using GIS Technique: A Case Study of Diyala Governorate, Iraq

2021 ◽  
Vol 32 (2) ◽  
pp. 96
Author(s):  
Dhuha S. Al-Khafaji ◽  
Asraa Khtan Abdulkareem ◽  
Qusai Y. Al-Kubaisi

To improve the management of water resources in Iraq, there are several methods, including the use of rainwater harvesting techniques. In this study, the Digital Elevation Model (DEM) and Landsat satellite imagery were used under the GIS environment to identify the suitable zones for rainwater harvesting. The accomplishment of rainwater harvesting systems strongly depends on their technical designing and identifying the suitable sites. Six criteria have been used to identify the rainwater harvesting sites in the Diyala governorate. The procedure of identifying the suitable sites for rainwater harvesting was applied twice for the Diyala governorate. Firstly, it was applied by using the criteria of rainfall, slope, stream order, distance to roads, and land use, and secondly, rainfall, slope, stream order, distance to roads, and Normalized Difference Vegetation Index (NDVI) criteria were used for this purpose. As a result, the study area was divided into three suitability zones: low, moderate, and high according to the specific criteria that were used to identify the rainwater harvesting suitable sites. It was found that in the application of land use criterion the low suitability zone represents 26%, 58% represents the moderate, and 16% for the high suitability zone, while in the method of NDVI it was found that 29% represents the zone that has low suitability, 57% represents the moderate, and 14% represents the high suitability zone. The compared results led to conclude that the land use is the most influential criterion for identifying the rainwater harvesting suitability sites and found that most of the Eastern parts of Diyala governorate are promising areas for rainwater harvesting and ArcGIS is a very useful, time-saving, and cost-effective tool for identifying the rainwater harvesting suitable sites.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Khamis Naba Sayl ◽  
Sadeq Oleiwi Sulaiman ◽  
Ammar Hatem Kamel ◽  
Nur Shazwani Muhammad ◽  
Jazuri Abdullah ◽  
...  

Currently, desertification is a major problem in the western desert of Iraq. The harsh nature, remoteness, and size of the desert make it difficult and expensive to monitor and mitigate desertification. Therefore, this study proposed a comprehensive and cost-effective method, via the integration of geographic information systems (GISs) and remote sensing (RS) techniques to estimate the potential risk of desertification, to identify the most vulnerable areas and determine the most appropriate sites for rainwater conservation. Two indices, namely, the Normalized Differential Vegetation Index (NDVI) and Land Degradation Index (LDI), were used for a cadastral assessment of land degradation. The findings of the combined rainwater harvesting appropriateness map, and the maps of NDVI and LDI changes found that 65% of highly suitable land for rainwater harvesting lies in the large change and 35% lies in the small change of NDVI, and 85% of highly suitable land lies in areas with a moderate change and 12% lies in strong change of LDI. The adoption of the weighted linear combination (WLC) and Boolean methods within the GIS environment, and the analysis of NDVI with LDI changes can allow hydrologists, decision-makers, and planners to quickly determine and minimize the risk of desertification and to prioritize the determination of suitable sites for rainwater harvesting.


2009 ◽  
Vol 62 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Carlos M. Di Bella ◽  
Ignacio J. Negri ◽  
Gabriela Posse ◽  
Florencia R. Jaimes ◽  
Esteban G. Jobbágy ◽  
...  

2018 ◽  
Vol 7 (10) ◽  
pp. 405 ◽  
Author(s):  
Urška Kanjir ◽  
Nataša Đurić ◽  
Tatjana Veljanovski

The European Common Agricultural Policy (CAP) post-2020 timeframe reform will reshape the agriculture land use control procedures from a selected risk fields-based approach into an all-inclusive one. The reform fosters the use of Sentinel data with the objective of enabling greater transparency and comparability of CAP results in different Member States. In this paper, we investigate the analysis of a time series approach using Sentinel-2 images and the suitability of the BFAST (Breaks for Additive Season and Trend) Monitor method to detect changes that correspond to land use anomaly observations in the assessment of agricultural parcel management activities. We focus on identifying certain signs of ineligible (inconsistent) use in permanent meadows and crop fields in one growing season, and in particular those that can be associated with time-defined greenness (vegetation vigor). Depending on the requirements of the BFAST Monitor method and currently time-limited Sentinel-2 dataset for the reliable anomaly study, we introduce customized procedures to support and verify the BFAST Monitor anomaly detection results using the analysis of NDVI (Normalized Difference Vegetation Index) object-based temporal profiles and time-series standard deviation output, where geographical objects of interest are parcels of particular land use. The validation of land use candidate anomalies in view of land use ineligibilities was performed with the information on declared land annual use and field controls, as obtained in the framework of subsidy granting in Slovenia. The results confirm that the proposed combined approach proves efficient to deal with short time series and yields high accuracy rates in monitoring agricultural parcel greenness. As such it can already be introduced to help the process of agricultural land use control within certain CAP activities in the preparation and adaptation phase.


2021 ◽  
Vol 20 (2) ◽  
pp. 1-19
Author(s):  
Tahmid Anam Chowdhury ◽  
◽  
Md. Saiful Islam ◽  

Urban developments in the cities of Bangladesh are causing the depletion of natural land covers over the past several decades. One of the significant implications of the developments is a change in Land Surface Temperature (LST). Through LST distribution in different Land Use Land Cover (LULC) and a statistical association among LST and biophysical indices, i.e., Urban Index (UI), Bare Soil Index (BI), Normalized Difference Builtup Index (NDBI), Normalized Difference Bareness Index (NDBaI), Normalized Difference Vegetation Index (NDVI), and Modified Normalized Difference Water Index (MNDWI), this paper studied the implications of LULC change on the LST in Mymensingh city. Landsat TM and OLI/TIRS satellite images were used to study LULC through the maximum likelihood classification method and LSTs for 1989, 2004, and 2019. The accuracy of LULC classifications was 84.50, 89.50, and 91.00 for three sampling years, respectively. From 1989 to 2019, the area and average LST of the built-up category has been increased by 24.99% and 7.6ºC, respectively. Compared to vegetation and water bodies, built-up and barren soil regions have a greater LST each year. A different machine learning method was applied to simulate LULC and LST in 2034. A remarkable change in both LULC and LST was found through this simulation. If the current changing rate of LULC continues, the built-up area will be 59.42% of the total area, and LST will be 30.05ºC on average in 2034. The LST in 2034 will be more than 29ºC and 31ºC in 59.64% and 23.55% areas of the city, respectively.


Author(s):  
O. S. Olokeogun ◽  
K. Iyiola ◽  
O. F. Iyiola

Mapping of LULC and change detection using remote sensing and GIS techniques is a cost effective method of obtaining a clear understanding of the land cover alteration processes due to land use change and their consequences. This research focused on assessing landscape transformation in Shasha Forest Reserve, over an 18 year period. LANDSAT Satellite imageries (of 30 m resolution) covering the area at two epochs were characterized into five classes (Water Body, Forest Reserve, Built up Area, Vegetation, and Farmland) and classification performs with maximum likelihood algorithm, which resulted in the classes of each land use. <br><br> The result of the comparison of the two classified images showed that vegetation (degraded forest) has increased by 30.96 %, farmland cover increased by 22.82 % and built up area by 3.09 %. Forest reserve however, has decreased significantly by 46.12 % during the period. <br><br> This research highlights the increasing rate of modification of forest ecosystem by anthropogebic activities and the need to apprehend the situation to ensure sustainable forest management.


2013 ◽  
Vol 39 (4) ◽  
pp. 59-70 ◽  
Author(s):  
Fredrick Ao Otieno ◽  
Olumuyiwa I Ojo ◽  
George M. Ochieng

Abstract Land cover change (LCC) is important to assess the land use/land cover changes with respect to the development activities like irrigation. The region selected for the study is Vaal Harts Irrigation Scheme (VHS) occupying an area of approximately 36, 325 hectares of irrigated land. The study was carried out using Land sat data of 1991, 2001, 2005 covering the area to assess the changes in land use/land cover for which supervised classification technique has been applied. The Normalized Difference Vegetation Index (NDVI) index was also done to assess vegetative change conditions during the period of investigation. By using the remote sensing images and with the support of GIS the spatial pattern of land use change of Vaal Harts Irrigation Scheme for 15 years was extracted and interpreted for the changes of scheme. Results showed that the spatial difference of land use change was obvious. The analysis reveals that 37.86% of additional land area has been brought under fallow land and thus less irrigation area (18.21%). There is an urgent need for management program to control the loss of irrigation land and therefore reclaim the damaged land in order to make the scheme more viable.


2018 ◽  
Vol 8 ◽  
pp. 91-100
Author(s):  
Belete Berhanu ◽  
Ethiopia Bisrat

Ethiopia is endowed with water and has a high runoff generation area compared to many countries, but the total stored water only goes up to approximately 36BCM. The problem of water shortage in Ethiopia emanates from the seasonality of rainfall and the lack of infrastructure for storage to capture excess runoff during flood seasons. Based on this premise, a method for a syndicate use of topography, land use and vegetation was applied to locate potential surface water storing sites. The steady-state Topographic Wetness Index (TWI) was used to represent the spatial distribution of water flow and water stagnating across the study area and the Normalized Difference Vegetation Index (NDVI) was used to detect surface water through multispectral analysis. With this approach, a number of water storing sites were identified in three categories: primary sources (water bodies based), secondary sources (Swampy/wetland based) and tertiary sources (the land based). A sample volume analysis for the 120354 water storing sites in category two, gives a 44.92BCM potential storing capacity with average depth of 4 m that improves the annual storage capacity of the country to 81BCM (8.6 % of annual renewable water sources). Finally, the research confirmed the TWI and NDVI based approach for water storing sites works without huge and complicated earth work; it is cost effective and has the potential of solving complex water resource challenges through spatial representation of water resource systems. Furthermore, the application of remote sensing captures temporal diversity and includes repetitive archives of data, enabling the monitoring of areas, even those that are inaccessible, at regular intervals.


Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 68
Author(s):  
Sarah A. Lewis ◽  
Peter R. Robichaud ◽  
Andrew T. Hudak ◽  
Eva K. Strand ◽  
Jan U. H. Eitel ◽  
...  

As wildland fires amplify in size in many regions in the western USA, land and water managers are increasingly concerned about the deleterious effects on drinking water supplies. Consequences of severe wildfires include disturbed soils and areas of thick ash cover, which raises the concern of the risk of water contamination via ash. The persistence of ash cover and depth were monitored for up to 90 days post-fire at nearly 100 plots distributed between two wildfires in Idaho and Washington, USA. Our goal was to determine the most ‘cost’ effective, operational method of mapping post-wildfire ash cover in terms of financial, data volume, time, and processing costs. Field measurements were coupled with multi-platform satellite and aerial imagery collected during the same time span. The image types spanned the spatial resolution of 30 m to sub-meter (Landsat-8, Sentinel-2, WorldView-2, and a drone), while the spectral resolution spanned visible through SWIR (short-wave infrared) bands, and they were all collected at various time scales. We that found several common vegetation and post-fire spectral indices were correlated with ash cover (r = 0.6–0.85); however, the blue normalized difference vegetation index (BNDVI) with monthly Sentinel-2 imagery was especially well-suited for monitoring the change in ash cover during its ephemeral period. A map of the ash cover can be used to estimate the ash load, which can then be used as an input into a hydrologic model predicting ash transport and fate, helping to ultimately improve our ability to predict impacts on downstream water resources.


2021 ◽  
Author(s):  
Javier Aparicio ◽  
Rafael Pimentel ◽  
María José Polo

&lt;p&gt;In Mediterranean mountain regions, traditional irrigation systems still persist in areas where the&amp;#160; modernization approaches do not succeed in being operational. It is common that these systems alter the soil uses, vegetation distribution and hydrological natural regime.&amp;#160;&lt;/p&gt;&lt;p&gt;This is the case of the extensive network of irrigation ditches in the Sierra Nevada Mountain Range in southeastern Spain (an UNESCO&amp;#160; Reserve of the Biosphere, with areas as Natural and National Park), which originated in Muslim times, and is still operational in some areas. These ditches have contributed to maintaining local agricultural systems and populations in basins dominated by snow conditions, and they constitute a traditional regulation of water resources in the area. The network is made up of two types of irrigation ditches: &amp;#8220;careo&amp;#8221; and irrigation ditches. The first, the &quot;careo&quot;, collects the meltwater and infiltrates it along its course, maintaining a high level of soil moisture and favouring deep percolation volumes that can be later consumed by the population through springs and natural fountains. The second, the irrigation ones, are used to transport water from the natural sources to the agricultural plots downstream the mountain area. In 2014, several irrigation ditches were restored in the Natural Park. This is a chance to further explore and quantify the role of this network in the hydrological budget on a local basis.&amp;#160;&amp;#160;&lt;/p&gt;&lt;p&gt;The aim of this work is to evaluate to what extent the existence of these intermittent water networks affects the evolution of the surrounding vegetation. For this, one of the restored systems,&amp;#160; the Barjas Ditch in the village of Ca&amp;#241;ar, with a successful water circulation along its way, was selected from the increase of the soil water content in the ditch influence area and, indirectly a differential development of vegetation. Two analyses are performed using remote sensing information. The Normalized Difference Vegetation Index, NDVI, which is a spectral index used to estimate the quantity, quality and development of vegetation that can therefore be used indirectly as an indicator of the state of soil moisture, was used as the indicator of evolution. For this purpose, a historical set of LandSat satellite images&amp;#160; (TM, ETM+ and OLI) has been used. On the one hand, a global analysis on the whole mountainous range was carried out, comparing NDVI patterns in areas affected and non-affected by the ditches. On the other hand, the restored&amp;#160; Barjas ditch is used to assess vegetation changes before and after the restoration.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document