scholarly journals BIOTRANSFORMASI ADIPONITRIL OLEH Bacillus licheniformis BA2

2004 ◽  
Vol 10 (1) ◽  
pp. 25-30
Author(s):  
Ahmad Thontowi ◽  
Eko W. Pamuji ◽  
Bambang Sunarko

Adipic acid represents one of the especial materials which used for the synthesis of nylon 6,6,- is a very important material results from polyamide industry. Adiponitrile biotransformation become adipic acid represent an alternative synthesis besides chemically. The purpose of this research was to determine optimum conditions for Bacillus licheniformis BA2 growth for adiponitrile degradation, and also know its pattern. The obtained information, to be expected can be used as reference for scaling up of adipic acid production. B. licheniformis BA2 was able to utilize acetonitrile and adiponitrile as the sole source of carbon and nitrogen. The growth on adiponitrile 120 mM mixture with acetonitrile 30 mM gave higher growth rate and biomass yield than growth on another subsrates. B. licheniformis BA2 have lag phase during 68 hours, logaritmic phase passed by during 104 hours, while stasioner phase just reached by after 172 hours. High-performance liquid chromatography of adiponitrile degradation by crude bacterial revealed a decrease in adiponitrile with the sequential formation of adipamide and adipic acid. Ammonia was also detected by colorimetric procedures. As for adipic acid rendemen at 420 minutes equal to 19.35 percent.

Biologia ◽  
2013 ◽  
Vol 68 (2) ◽  
Author(s):  
Maegala Nallapan Maniyam ◽  
Fridelina Sjahrir ◽  
Abdul Ibrahim ◽  
Anthony Cass

AbstractA new bacterial strain, Rhodococcus UKMP-5M isolated from petroleum-contaminated soils demonstrated promising potential to biodegrade cyanide to non-toxic end-products. Ammonia and formate were found as final products during growth of the isolate with KCN as the sole nitrogen source. Formamide was not detected as one of the end-products suggesting that the biodegradation of cyanide by Rhodococcus UKMP-5M may have proceeded via a hydrolytic pathway involving the bacterial enzyme cyanidase. No growth of the bacterium was observed when KCN was supplied as the sole source of carbon and nitrogen even though marginal reduction in the concentration of cyanide was recorded, indicating the toxic effect of cyanide even in cyanide-degrading microorganisms. The cyanide biodegradation ability of Rhodococcus UKMP-5M was greatly affected by the presence of organic nutrients in the medium. Medium containing glucose and yeast extract promoted the highest growth rate of the bacterium which simultaneously assisted complete biodegradation of 0.1 mM KCN within 24 hours of incubation. It was found that growth and cyanide biodegradation occurred optimally at 30°C and pH 6.3 with glucose as the preferred carbon source. Acetonitrile was used as an inducer to enhance cyanide biodegradation since the enzymes nitrile hydratase and/or nitrilase have similarity at both the amino acid and structural levels to that of cyanidase. The findings from this study should be of great interest from an environmental and health point of views since the optimum conditions discovered in the present study bear a close resemblance to the actual scenario of cyanide wastewater treatment facilities.


2019 ◽  
Vol 21 (9) ◽  
pp. 616-630 ◽  
Author(s):  
Gary Diamond ◽  
Alfred Hagemeyer ◽  
Vince Murphy ◽  
Valery Sokolovskii

The transformation of low cost sugar feedstocks into market chemicals and monomers for existing or novel high performance polymers by chemical catalysis is reviewed. Emphasis is given to industrially relevant, continuous flow, trickle bed processes. Since long-term catalyst stability under hydrothermal conditions is an important issue to be addressed in liquid phase catalysis using carbohydrate feedstocks, we will primarily discuss the results of catalytic performance for prolonged times on stream. In particular, the selective aerobic oxidation of glucose to glucaric acid and the subsequent selective hydrogenation to adipic acid is reviewed. Hydroxymethylfurfural (HMF), which is readily available from fructose, can be upgraded by oxidation to furan dicarboxylic acid (FDCA) or by consecutive reduction and hydrogenolysis to hexanetriol (HTO) followed by hydrogenolysis to biobased hexanediol (HDO). Direct amination of HDO yields biobased hexamethylene diamine (HMDA). Aerobic oxidation of HDO represents an alternative route to biobased adipic acid. HMDA and adipic acid are the monomers required for the production of nylon- 6,6, a major polymer for engineering and fibre applications.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 691 ◽  
Author(s):  
Chien Doan ◽  
Thi Tran ◽  
Minh Nguyen ◽  
Van Nguyen ◽  
Anh Nguyen ◽  
...  

Anti-α-glucosidase (AAG) compounds have received great attention due to their potential use in treating diabetes. In this study, Bacillus licheniformis TKU004, an isolated bacterial strain from Taiwanese soil, produced AAG activity in the culture supernatant when squid pens were used as the sole carbon/nitrogen (C/N) source. The protein TKU004P, which was isolated from B. licheniformis TKU004, showed stronger AAG activity than acarbose, a commercial anti-diabetic drug (IC50 = 0.1 mg/mL and 2.02 mg/mL, respectively). The molecular weight of TKU004P, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), was 29 kDa. High-performance liquid chromatography (HPLC) analysis showed that TKU004P may be a protease that demonstrates AAG activity by degrading yeast α-glucosidase. Among the four chitinous sources of C/N, TKU004P produced the highest AAG activity in the culture supernatant when shrimp head powder was used as the sole source (470.66 U/mL). For comparison, 16 proteases, were investigated for AAG activity but TKU004P produced the highest levels. Overall, the findings suggest that TKU004P could have applications in the biochemical and medicinal fields thanks to its ability to control the activity of α-glucosidase.


2018 ◽  
Vol 16 (3) ◽  
Author(s):  
Rini Riffiani ◽  
Nunik Sulistinah

Potential nitrile degrading microbes have been isolated from marine sponge, marine water and soil in Enggano Island. Nitrilase enzyme has a function in degrading nitrile compund. Nitrilases are important industrial enzymes because of their ability to produce biologically active to degrade enantiomers, such as S-(+)-1-(4’-isobutylphenyl) propionic acid (S-(+)-ibuprofen) and R-(-) mandelic acid. Mandelic acids, which are important as pharmaceutical intermediates, can be produced in enantiomerically pure form by the hydrolysis of their corresponding nitrile. The aim of the study was to explore the diversity of nitrile degrading bacteria in Enggano Island, and their ability to utilize nitrile as a substrate growth. Screening of such microbes were carried out by using microtitter plate method based on growth ability tested by INT (Iodonitrotetrazoliumchloride). Degradation product was determined by High Performance Liquid Chromatography (HPLC). Seventy nine bacteria were able to grow on acetamide, acetonitrile, benzonitrile, adiponitrile, mandelonitrile, succinonitrile, lactonitrile, dan benzilcyanide as the sole source of carbon and nitrogen. Two isolates, YIM 56238 and PO69, have shown to enantioselectively hydrolyze racemic mandelonitrile to mandelic acid. Based on 16S rRNA gene identification, these bacteria have the highest sequence similarity to Microccous endophyticus strain YIM 56238 and Rhodococcus pyridinivorans strain PO69.


2018 ◽  
Vol 69 (3) ◽  
pp. 627-631 ◽  
Author(s):  
Viorica Ohriac (Popa) ◽  
Diana Cimpoesu ◽  
Adrian Florin Spac ◽  
Paul Nedelea ◽  
Voichita Lazureanu ◽  
...  

Pain is defined as a disagreeable sensory and emotional experience related to a tissue or potential lesion. Paracetamol (Acetaminophen) is the most used non-morphine analgesic. For the determination of paracetamol we developed and validated the high performance liquid chromatography (HPLC) analysis using a Dionex Ultimate 3000 liquid chromatograph equipped with a multidimensional detector. After determining the optimum conditions of analysis (80/20 water / acetonitrile mobile phase, flow rate 1.0 mL / min, detection wavelength 245 nm) we validated the method following the following parameters: linearity of response function, linearity of results, limit (LD = 0.66 mg / mL) and quantification limit (LQ = 2.00 mg / mL), and precision. The method of determining paracetamol by HPLC was applied to 30 samples of serum collected from patients who had pain and were treated with paracetamol.


2019 ◽  
Vol 15 (6) ◽  
pp. 607-615 ◽  
Author(s):  
Shirley K. Selahle ◽  
Philiswa N. Nomngongo

Background and Objective: A rapid, simple and environmental friendly supramolecular solvent (SUPRAS) based liquid-liquid microextraction method for preconcentration of ciprofloxacin (CIPRO), danofloxacin (DANO) and enrofloxacin (ENRO) from wastewater was developed. Methods: This microextraction technique was coupled with high-performance liquid chromatography equipped with a diode array detector (HPLC-PDA) for detection and separation of the antibiotics. The SUPRAS composed of decanoic acid and tricaprylymethylammonium chloride. Optimum conditions for the extraction and preconcentration of all the antibiotics were obtained using surface response methodology (RSM) based on Box-Behnken design. Results: Under optimum conditions, the limits of detection (LOD) and limit of quantification (LOQ) ranged from 0.06-0.14 µg L−1 and 0.22-0.47 μg L−1, respectively with the preconcentration factors ranging from 153-241. The linear dynamic ranges were between LOQ and 850 µg L−1 with correlation coefficients ranging from 0.9928 to 0.9999. The intra-day (n = 15) and inter-day (n = 5) precisions (expressed in terms of %RSD) for 50 µg L−1 of CIPRO, DANO and ENRO were in the range of 3.3–4% and 4.1–5.8%, respectively. Conclusion: Lastly, the developed method was used for the extraction, preconcentration and quantification of selected CIPRO, DANO and ENRO in influent and effluent wastewater samples.


1994 ◽  
Vol 59 (3) ◽  
pp. 569-574 ◽  
Author(s):  
Josef Královský ◽  
Marta Kalhousová ◽  
Petr Šlosar

The reversed-phase high-performance liquid chromatography of some selected, industrially important aromatic sulfones has been investigated. The chromatographic behaviour of three groups of aromatic sulfones has been studied. The optimum conditions of separation and UV spectra of the sulfones and some of their hydroxy and benzyloxy derivatives are presented. The dependences of capacity factors vs methanol content in mobile phase are mentioned. The results obtained have been applied to the quantitative analysis of different technical-grade samples and isomer mixtures. For all the separation methods mentioned the concentration ranges of linear calibration curves have been determined.


Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 497 ◽  
Author(s):  
Ye Wang ◽  
Haiyang Zhang ◽  
Hai Yan ◽  
Chunhua Yin ◽  
Yang Liu ◽  
...  

Aflatoxin B1 (AFB1), a pollutant of agricultural products, has attracted considerable attention in recent years, due to its potential impact on health. In the present study, Bacillus licheniformis (BL010) was demonstrated to efficiently degrade AFB1, reducing over 89.1% of the toxin content within 120 h. A crude enzyme solution of BL010 exhibited the highest degradation level (97.3%) after three induction periods. However, uninduced BL010 bacteria was not capable of reducing AFB1. Furthermore, high performance liquid chromatography (HPLC) analysis showed that while a cell-free extract caused a significant decrease in AFB1 content (93.6%, p < 0.05), cell culture fluid treatment did not significantly degrade AFB1. The biotransformation products of AFB1 were detected and further identified by quadrupole time-of-flight liquid chromatography–mass spectrometry (LC-Q-TOF/MS); these corresponded to a molecular formula of C12H14O4. A sequence analysis of whole BL010 genes with a bioinformatics approach identified the secondary structures of two degrading enzymes (Chia010 and Lac010), providing an important basis for subsequent homology modeling and functional predictions.


2011 ◽  
Vol 5 (3) ◽  
pp. 34-40
Author(s):  
Abdulkareem Jasim ◽  
Hameed M. Jasim ◽  
Isra'a M. Dhahi

Different nutritional and cultural factors were studied to determine the optimum conditions for prodigiosin production by Serratia marcescens S11 in a batch culture of brain-heart infusion broth medium. These factors include carbon source and its concentration, nitrogen source and its concentration, phosphate source, temperature and pH. Results showed that the optimum conditions for prodigiosin production were achieved when the production medium was supplemented with olive oil and casein hydrolysate as a carbon and nitrogen sources respectively in a concentration of 1.5% for broth, KH2PO4 as a phosphate source at initial medium pH8, and incubation at 28°C for 24 hours. Under these optimal conditions, prodigiosin activity produced by Serratia marcescens S11 in culture medium was increased from 200 U/cell before optimization to 3000 U/cell.


Sign in / Sign up

Export Citation Format

Share Document