scholarly journals Siderophore Producer Pantoea Brenneri AS3 as a Fungicidal Agent

2019 ◽  
Vol 4 (3) ◽  
pp. 1-5
Author(s):  
Itkina DL

With the growth of the planet’s population and the depletion of mineral resources, the increase in crop yields, the search for environmentally friendly technologies, the use of enzymes and siderophores of bacterial origin, or the use of bacterial strains t hat promote plant growth (PGP ) are becoming more urgent. Was found in a strain of bacteria Pantoea brenneri AS3 produced of siderophore (82.05 μM) accounted for 28 hour culture. The strain Pantoea brenneri AS3 demonstrate antagonistic activity against all studied phytopathogenic fungi. Antagonistic activity was measured on the basis of growth inhibition of micromycetes colony compared to the control plates. The highest antagonistic activities of both strains were observed against F. solani (87%).

2022 ◽  
Vol 1 ◽  
Author(s):  
Isaneli Batista dos Santos ◽  
Arthur Prudêncio de Araújo Pereira ◽  
Adijailton José de Souza ◽  
Elke Jurandy Bran Nogueira Cardoso ◽  
Flaviana Gonçalves da Silva ◽  
...  

Burkholderia sp. is a bacterial genus extremely versatile in the environment and has been reported for a great potential to promote plant growth via different mechanisms. Here we evaluate the plant growth-promoting mechanisms in twenty-six Burkholderia strains. Strains were evaluated for their ability to promote plant growth by means of: indole-3-acetic acid (IAA) production under different conditions of pH, salt stress and the presence or absence of L-tryptophan; exopolysaccharides (EPS) production and quorum sensing (ALH). The strains were also characterized in terms of their genetic variability and species identification through Sanger sequencing. Then, the bacteria most responsive in the greatest number of plant-growth promotion mechanisms were selected for a corn seed germination test. All bacteria synthesized IAA in medium with 0.0 or 5.0 mM of L-tryptophan in combination with either 1 or 5% of NaCl, and pH values of either 4.5 or 7.2. The EPS production was confirmed for 61.54% of the bacterial strains. Quorum sensing also occurred in 92.3% of the selected bacteria. The Jaccard similarity coefficient revealed 16 clusters with high genetic variability between bacterial strains. Bacterial strains were assigned to seven species: B. anthina, B. cepacia, B. gladioli, B. ambifaria, B. graminis, B. heleia, and Burkholderia spp. The corn seed bacterization did not affect the germination velocity index (GSI), as well as the first count of germinated seeds (FC). However, inoculations formulated with B. heleia strain G28, B. gladioli strain UAGC723, and B. graminis strain UAGC348 promoted significant increases in root length, seedling height and fresh and dry seedling phytomass, respectively. These results indicate the high biotechnological potential of several strains in the genus Burkholderia sp. as seed inoculants, favoring germination and seedling initial development.


2021 ◽  
Vol 5 ◽  
Author(s):  
Munusamy Madhaiyan ◽  
Govindan Selvakumar ◽  
Tan HianHwee Alex ◽  
Lin Cai ◽  
Lianghui Ji

A survey of bacterial endophytes associated with the leaves of oil palm and acacias resulted in the isolation of 19 bacterial strains belonging to the genera Paraburkholderia, Caballeronia, and Chitinasiproducens, which are now regarded as distinctively different from the parent genus Burkholderia. Most strains possessed one or more plant growth promotion (PGP) traits although nitrogenase activity was present in only a subset of the isolates. The diazotrophic Paraburkholderia tropica strain S39-2 with multiple PGP traits and the non-diazotrophic Chitinasiproducens palmae strain JS23T with a significant level of 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity were selected to investigate the influence of bacterial inoculation on some economically important tree species. Microscopic examination revealed that P. tropica S39-2 was rhizospheric as well as endophytic while C. palmae JS23T was endophytic. P. tropica strain S39-2 significantly promoted the growth of oil palm, eucalyptus, and Jatropha curcas. Interestingly, the non-diazotrophic, non-auxin producing C. palmae JS23T strain also significantly promoted the growth of oil palm and eucalyptus although it showed negligible effect on J. curcas. Our results suggest that strains belonging to the novel Burkholderia-related genera widely promote plant growth via both N-independent and N-dependent mechanisms. Our results also suggest that the induction of defense response may prevent the colonization of an endophyte in plants.


2021 ◽  
Vol 22 (2) ◽  
Author(s):  
Qonita Gina Fadhilah ◽  
Iman Santoso ◽  
Yasman YASMAN

Abstract. Fadhilah QG, Santoso I, Yasman. 2021. The antagonistic activity of marine actinomycetes from mangrove ecosystem against phytopathogenic fungi Colletotrichum sp. KA. Biodiversitas 22: 642-649.  Marine actinomycetes from mangrove ecosystems are known to be potential antifungal-producing isolates against phytopathogenic fungi. The aim of this research was to obtain potential marine actinomycetes isolates against the phytopathogenic fungi Colletotrichum sp. KA. Screening of 15 marine actinomycetes isolates using a dual culture method with a plug technique showed that 80% of isolates have antagonistic activity, represented as a percentage of growth inhibition range from 47.96% to 84.94%. Among 12 potential isolates, six isolates (SM4, SM11, SM14, SM15, SM18, and SM20) were evaluated for delayed antagonistic activity with incubation periods of 6, 9, and 12 days using the plug and streak techniques. The results showed that the percentage of growth inhibition of selected isolates inclined to increase along with the incubation period prior to inoculation of Colletotrichum sp. KA. Delayed antagonist assays using the streak technique resulted in higher inhibition results compared to the plug technique. Furthermore, the non-delayed assays of the two selected isolates, SM11 and SM15, also inhibited Colletotrichum sp. KA 57.99% and 59.88%, respectively. The delayed antagonist assay with a shorter incubation period of the two selected isolates also showed an increased percentage of growth inhibition of Colletotrichum sp. KA. According to our research, the delayed antagonistic assay of marine actinomycetes isolates with a 12-day incubation period using a plug technique was representative to evaluate the percentage of growth inhibition.


Author(s):  
Umair Riaz ◽  
Laila Shahzad ◽  
Wajiha Anum ◽  
Anam Waheed

Beneficial microbes are used as the best alternative against the synthetic fertilizers and pesticides. The beneficial microbes not only help with plant growth, nutrition uptake, nitrogen fixation, but also help in acquiring the ions, not freely available to plants to uptake; these microbes also guard the plants by secreting toxic chemicals by inducing defense systems against pathogens. These microbes can provide best choice to look forward to sustainable agriculture and sustainable ecosystem. The addition of soil inoculants in the form of microorganisms or bio stimulants promise more environmentally friendly approaches for augmenting crop yields. The crop becomes less reliant on chemical fungicides and herbicides as many strains of microorganism have abilities of controlling pests. In this chapter, the interaction of beneficial plant bacteria, bio stimulants, effects on native microbial communities, and bacteria influencing economically important crops are discussed.


2021 ◽  
Author(s):  
Mingsheng Qi ◽  
Jeffrey C. Berry ◽  
Kira Veley ◽  
Lily O’Connor ◽  
Omri M. Finkel ◽  
...  

AbstractBackgroundDrought is a major abiotic stress that limits agricultural productivity. Previous field-level experiments have demonstrated that drought decreases microbiome diversity in the root and rhizosphere and may lead to enrichment of specific groups of microbes, such as Actinobacteria. How these changes ultimately affect plant health is not well understood. In parallel, model systems have been used to tease apart the specific interactions between plants and single, or small groups of microbes. However, translating this work into crop species and achieving increased crop yields within noisy field settings remains a challenge. Thus, the next scientific leap forward in microbiome research must cross the great lab-to-field divide. Toward this end, we combined reductionist, transitional and ecological approaches, applied to the staple cereal crop sorghum to identify key beneficial and detrimental, root associated microbes that robustly affect drought stressed plant phenotypes.ResultsFifty-three bacterial strains, originally characterized for association with Arabidopsis, were applied to sorghum seeds and their effect on root growth was monitored for seven days. Two Arthrobacter strains, members of the Actinobacteria phylum, caused root growth inhibition (RGI) in Arabidopsis and sorghum. In the context of synthetic communities, strains of Variovorax were able to protect both Arabidopsis and sorghum from the RGI caused by Arthrobacter. As a transitional system, we tested the synthetic communities through a 24-day high-throughput sorghum phenotyping assay and found that during drought stress, plants colonized by Arthrobacter were significantly smaller and had reduced leaf water content as compared to control plants. However, plants colonized by both Arthrobacter and Variovorax performed as well or better than control plants. In parallel, we performed a field trial wherein sorghum was evaluated across well-watered and drought conditions. Drought responsive microbes were identified, including an enrichment in Actinobacteria, consistent with previous findings. By incorporating data on soil properties into the microbiome analysis, we accounted for experimental noise with a newly developed method and were then able to observe that the abundance of Arthrobacter strains negatively correlated with plant growth. Having validated this approach, we cross-referenced datasets from the high-throughput phenotyping and field experiments and report a list of high confidence bacterial taxa that positively associated with plant growth under drought stress.ConclusionsA three-tiered experimental system connected reductionist and ecological approaches and identified beneficial and deleterious bacterial strains for sorghum under drought stress.


2019 ◽  
Vol 16 (33) ◽  
pp. 225-240
Author(s):  
E. V. PRAZDNOVA ◽  
A. V. GOROVTSOV ◽  
V. A. CHISTYAKOV ◽  
N. G. VASILCHENKO ◽  
L. E. KUKHARENKO

Restoring and improving soil fertility, increasing the productivity of cultivated plants is one of the objectives of agricultural production. The aim of the present work was to study the antagonistic interactions between the soil bacteria of the order Bacillales and phytopathogenic fungi. The spore-forming soil bacteria attract increasing interest as biocontrol agents, but little is known about the influence of local soil conditions on the development of antagonism in indigenous bacterial strains. This can lead to unsuccessful attempts of bacterial antagonists isolation. To determine the sequences of primary nucleotide DNA, the authors used the Sanger sequencing method, the detection of sequencing products was performed automatically, using themethod of capillary electrophoresis. Homology of at least 97% was considered as the criterion for classifying a microorganism as a certain species. This study presents new data on the influence of soil type and preceding crop on the level of antagonism against Fusarium and Plectosphaerella. The results show that both the soil type and preceding crop influence the fungal-bacterial antagonistic interactions. The strongest antagonistic activity among all bacterial isolates was found in bacteria isolated from AlbicPhaeozem. The highest antagonistic activity against F. graminearum was shown by strains that were isolated from soils on which winter wheat was the preceding crop.


2021 ◽  
Vol 26 (2) ◽  
pp. 196-206
Author(s):  
Saúl Espinosa Zaragoza ◽  
Ricardo Sánchez Cruz ◽  
Diana Sanzón Gómez ◽  
Margarita C Escobar Sandoval ◽  
Gustavo Yañez Ocampo ◽  
...  

In the present study, 62 endophytic bacterial strains of cedar seeds (Cedrela odorataL.), collected in the municipalities of Huehuetán, Motozintla, and Pijijiapan in the state of Chiapas, Mexico were isolated. The goal was to identify characteristics of biotechnological interest such as biocontrol, promotion of plant growth, and growth in aromatic compounds. The strains were identified by the partial sequence of the 16S ribosomal gene as belonging to the Bacillusgenus. The biocontrol capacity of phytopathogenic fungi, production of indoleacetic acid (IAA), solubilization of phosphate, and growth in xenobiotic compounds (phenanthrene, benzene, anthracene, or phenol) were detected in 26 strains of the 62 isolates. 21 % of the strains inhibited the mycelial growth of Alternaria solaniand Fusariumsp., and 13 % of the Phytophthora capsicioomycete. IAA production was detected in 24 isolates, phosphate solubilizing activity was identified in 18 isolates, while the ability to grow in the presence of phenanthrene and benzene was found in 26 isolates; 24 isolates grew in the presence of anthracene and only two isolates grew in phenol as the only carbon sources. This is the first report of the isolation and identification of endophytic bacteria from cedar seeds, where biotechnological characteristics were detected for biological control, promotion of plant growth, and growth in the presence of xenobiotic compounds.


2021 ◽  
Vol 9 (9) ◽  
pp. 1924
Author(s):  
Pierre Joly ◽  
Alexandra Calteau ◽  
Aurélie Wauquier ◽  
Rémi Dumas ◽  
Mylène Beuvin ◽  
...  

Agriculture is in need of alternative products to conventional phytopharmaceutical treatments from chemical industry. One solution is the use of natural microorganisms with beneficial properties to ensure crop yields and plant health. In the present study, we focused our analyses on a bacterium referred as strain B25 and belonging to the species Bacillus velezensis (synonym B. amyloliquefaciens subsp. plantarum or B. methylotrophicus), a promising plant growth promoting rhizobacterium (PGPR) and an inhibitor of pathogenic fungi inducing crops diseases. B25 strain activities were investigated. Its genes are well preserved, with their majority being common with other Bacillus spp. strains and responsible for the biosynthesis of secondary metabolites known to be involved in biocontrol and plant growth-promoting activities. No antibiotic resistance genes were found in the B25 strain plasmid. In vitro and in planta tests were conducted to confirm these PGPR and biocontrol properties, showing its efficiency against 13 different pathogenic fungi through antibiosis mechanism. B25 strain also showed good capacities to quickly colonize its environment, to solubilize phosphorus and to produce siderophores and little amounts of auxin-type phytohormones (around 13,051 µg/mL after 32 h). All these findings combined to the fact that B25 demonstrated good properties for industrialization of the production and an environmental-friendly profile, led to its commercialization under market authorization since 2018 in several biostimulant preparations and opened its potential use as a biocontrol agent.


2020 ◽  
Vol 42 ◽  
pp. e44364 ◽  
Author(s):  
Angela Cristina Ikeda ◽  
Daiani Cristina Savi ◽  
Mariangela Hungria ◽  
Vanessa Kava ◽  
Chirlei Glienke ◽  
...  

The use of plant growth-promoting bacteria (PGPB), which aims to replace chemical fertilizers and biological control, is a goal for achieving agriculture sustainability. In this scenario, our goal was to identify and evaluate the potential of bacteria isolated from maize roots to promote plant growth and be used as inoculants. We evaluated 173 bacterial strains isolated from the maize (Zea mays L.) rhizosphere for the properties of their PGPB in vitro. Twelve strains were positive for siderophores, indole acetic acid (IAA) production, biological nitrogen fixation (BNF), and phosphate solubilization. Sequence analysis of 16S rRNA identified these strains as belonging to the genera Cellulosimicrobium, Stenotrophomonas, Enterobacter, and Bacillus. The elite strains were evaluated under greenhouse conditions upon the inoculation of two maize hybrids, ATL100 and KWX628. The ability of the isolates to promote plant growth was dependent on the maize genotype; Enterobacter sp. LGMB208 showed the best ability to promote growth of hybrid ATL100, while Enterobacter sp. strains LGMB125, LGMB225, and LGMB274 and Cellulosimicrobium sp. strain LGMB239 showed the best ability to promote growth of hybrid KWX628. The results highlight the potential of bacterial genera little explored as maize PGPB but indicate the need to investigate their interactions with different plant genotypes.


1995 ◽  
Vol 41 (6) ◽  
pp. 533-536 ◽  
Author(s):  
Bernard R. Glick ◽  
Damir M. Karaturovíc ◽  
Peter C. Newell

A rapid and novel procedure for the isolation of plant growth promoting rhizobacteria (PGPR) is described. This method entails screening soil bacteria for the ability to utilize the compound 1-aminocyclopropane-1-carboxylate (ACC) as a sole N source, a trait that is a consequence of the presence of the activity of the enzyme ACC deaminase. This trait appears to be limited to soil bacteria that are also capable of stimulating plant growth. Seven different soil samples from two geographically disparate locations were found to contain pseudomonads that were able to to utilize ACC as a N source. Each of the seven strains was shown, by the ability of the bacterium to promote canola seedling root elongation under gnotobiotic conditions, to be a PGPR. The method described here may be used to replace the otherwise slow and tedious process of testing individual bacterial strains for their ability to promote plant growth, thereby significantly speeding up the process of finding new PGPR.Key words: plant growth promoting rhizobacteria, PGPR, 1-aminocyclopropane-1-carboxylate, ACC, ACC deaminase, bacterial fertilizer, soil bacteria.


Sign in / Sign up

Export Citation Format

Share Document