scholarly journals Loss Prevention Mitigation in Sour Water Stripper (SWS) Cooler Using Process and Computational Fluid Dynamics (CFD) Modelling

2021 ◽  
Vol 5 (3) ◽  
pp. 1-12
Author(s):  
Hassan-Beck H

Sour water stripping (SWS) units are similar to other process units that can bring many operational challenges to meet target stripped water specifications. Failure of any equipment in the unit leads to unplanned shutdown and hence increases the downtime of the unit. In this study we investigated the outlet nozzle and elbow downstream the finfan cooler as they occasionally leak due to apparently metal thinning. Process simulation using appropriate electrolyte thermodynamic package to predict vapour liquid equilibrium and streams flow rates was used. Subsequently, Computational fluid dynamics (CFD) simulation was use to predict the erosion patterns. To mitigate and prevent unit upset, many option have been recommended to change the operating mode of the finfan cooler so as to circumvent alloy change. The CFD simulation results matched the erosion pattern that caused the loss of wall thickness. Different cases were investigated addressing elbow size, flow regime and elbow angle. The results, however, have indicated that the erosion is unavoidable irrespective of the fluctuation in the throughputs to the unit.

Author(s):  
S N A Ahmad Termizi ◽  
C Y Khor ◽  
M A M Nawi ◽  
Nurlela Ahmad ◽  
Muhammad Ikman Ishak ◽  
...  

2013 ◽  
Vol 368-370 ◽  
pp. 599-602 ◽  
Author(s):  
Ian Hung ◽  
Hsien Te Lin ◽  
Yu Chung Wang

This study focuses on the performance of air conditioning design at the Dazhi Cultural Center and uses a computational fluid dynamics (CFD) simulation to discuss the differences in wind velocity and ambient indoor temperature between all-zone air conditioning design and stratified air conditioning design. The results have strong implications for air conditioning design and can improve the indoor air quality of assembly halls.


2008 ◽  
Vol 1097 ◽  
Author(s):  
Helen Jane Griffiths ◽  
John G Harvey ◽  
James Dean ◽  
James A Curran ◽  
Athina E Markaki ◽  
...  

AbstractCell-implant adhesive strength is important for prostheses. In this paper, an investigation is described into the adhesion of bovine chondrocytes to Ti6Al4V-based substrates with different surface roughnesses and compositions. Cells were cultured for 2 or 5 days, to promote adhesion. The ease of cell removal was characterised, using both biochemical (trypsin) and mechanical (accelerated buoyancy and liquid flow) methods. Computational fluid dynamics (CFD) modelling has been used to estimate the shear forces applied to the cells by the liquid flow. A comparison is presented between the ease of cell detachment indicated using these methods, for the three surfaces investigated.


2009 ◽  
Vol 62 (3) ◽  
pp. 477-491 ◽  
Author(s):  
D. C. Lo ◽  
Dong-Taur Su ◽  
Jan-Ming Chen

It is well known that vessels operating in the vicinity of a lateral bank experience a significant yaw moment and sway force. This bank effect has a major impact on the manoeuvring properties of the vessel and must therefore be properly understood to ensure the safe passage of the vessel through the restricted waterway. Accordingly, this study performs a series of simulations using commercial FLOW-3D® computational fluid dynamics (CFD) software and the KRISO 3600 TEU container ship model to examine the effects of the vessel speed and distance to bank on the magnitude and time-based variation of the yaw angle and sway force. The results show that for a given vessel speed, the yaw angle and sway force increase as the distance to bank reduces, while for a given distance between the ship and the bank, the yaw angle and sway force increase with an increasing vessel speed. In addition, it is shown that even when a vessel advances at a very low speed, it experiences a significant bank effect when operating in close vicinity to the bank. Overall, the results presented in this study confirm the feasibility of the CFD modelling approach as a means of obtaining detailed insights into the bank effect without the need for time-consuming and expensive ship trials.


2014 ◽  
Vol 11 (6) ◽  
Author(s):  
Paolo Sala ◽  
Paola Gallo Stampino ◽  
Giovanni Dotelli

This work is part of a project whose final aim is the realization of an auxiliary power fuel cell generator. It was necessary to design and develop bipolar plates that would be suitable for this application. Bipolar plates have a relevant influence on the final performances of the entire device. A gas leakage or a bad management of the water produced during the reaction could be determinant during operations and would cause the failure of the stack. The development of the bipolar plates was performed in different steps. First, the necessity to make an esteem of the dynamics that happen inside the feeding channels led to perform analytical calculations. The values found were cross-checked performing a computational fluid dynamics (CFD) simulation; finally, it was defined the best pattern for the feeding channels, so that to enhance mass transport and achieve the best velocity profile. The bipolar plates designed were machined and assembled in a laboratory scale two cells prototype stack. Influences of the temperature and of the humidity were evaluated performing experiments at 60 deg and 70 deg and between 60% and 100% of humidity of the reactant gasses. The best operating point achieved in one of these conditions was improved by modifying the flow rates of the reactant, in order to obtain the highest output power, and it evaluated the reliability of the plates in experiments performed for longer times, at fixed voltages.


Sign in / Sign up

Export Citation Format

Share Document