scholarly journals Towards A Graphene Chip System For Blood Clotting Disease Diagnostics

2020 ◽  
Author(s):  
◽  
Jacob J. Mitchell

Point of care diagnostics (POCD) allows the rapid, accurate measurement of analytes near to a patient. This enables faster clinical decision making and can lead to earlier diagnosis and better patient monitoring and treatment. However, despite many prospective POCD devices being developed for a wide range of diseases this promised technology is yet to be translated to a clinical setting due to the lack of a cost-effective biosensing platform.This thesis focuses on the development of a highly sensitive, low cost and scalable biosensor platform that combines graphene with semiconductor fabrication tech-niques to create graphene field-effect transistors biosensor. The key challenges of designing and fabricating a graphene-based biosensor are addressed. This work fo-cuses on a specific platform for blood clotting disease diagnostics, but the platform has the capability of being applied to any disease with a detectable biomarker.Multiple sensor designs were tested during this work that maximised sensor ef-ficiency and costs for different applications. The multiplex design enabled different graphene channels on the same chip to be functionalised with unique chemistry. The Inverted MOSFET design was created, which allows for back gated measurements to be performed whilst keeping the graphene channel open for functionalisation. The Shared Source and Matrix design maximises the total number of sensing channels per chip, resulting in the most cost-effective fabrication approach for a graphene-based sensor (decreasing cost per channel from £9.72 to £4.11).The challenge of integrating graphene into a semiconductor fabrication process is also addressed through the development of a novel vacuum transfer method-ology that allows photoresist free transfer. The two main fabrication processes; graphene supplied on the wafer “Pre-Transfer” and graphene transferred after met-allisation “Post-Transfer” were compared in terms of graphene channel resistance and graphene end quality (defect density and photoresist). The Post-Transfer pro-cess higher quality (less damage, residue and doping, confirmed by Raman spec-troscopy).Following sensor fabrication, the next stages of creating a sensor platform involve the passivation and packaging of the sensor chip. Different approaches using dielec-tric deposition approaches are compared for passivation. Molecular Vapour Deposi-tion (MVD) deposited Al2O3 was shown to produce graphene channels with lower damage than unprocessed graphene, and also improves graphene doping bringing the Dirac point of the graphene close to 0 V. The packaging integration of microfluidics is investigated comparing traditional soft lithography approaches and the new 3D printed microfluidic approach. Specific microfluidic packaging for blood separation towards a blood sampling point of care sensor is examined to identify the laminar approach for lower blood cell count, as a method of pre-processing the blood sample before sensing.To test the sensitivity of the Post-Transfer MVD passivated graphene sensor de-veloped in this work, real-time IV measurements were performed to identify throm-bin protein binding in real-time on the graphene surface. The sensor was function-alised using a thrombin specific aptamer solution and real-time IV measurements were performed on the functionalised graphene sensor with a range of biologically relevant protein concentrations. The resulting sensitivity of the graphene sensor was in the 1-100 pg/ml concentration range, producing a resistance change of 0.2% per pg/ml. Specificity was confirmed using a non-thrombin specific aptamer as the neg-ative control. These results indicate that the graphene sensor platform developed in this thesis has the potential as a highly sensitive POCD. The processes developed here can be used to develop graphene sensors for multiple biomarkers in the future.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chukwunonso Onyilagha ◽  
Henna Mistry ◽  
Peter Marszal ◽  
Mathieu Pinette ◽  
Darwyn Kobasa ◽  
...  

AbstractThe coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), calls for prompt and accurate diagnosis and rapid turnaround time for test results to limit transmission. Here, we evaluated two independent molecular assays, the Biomeme SARS-CoV-2 test, and the Precision Biomonitoring TripleLock SARS-CoV-2 test on a field-deployable point-of-care real-time PCR instrument, Franklin three9, in combination with Biomeme M1 Sample Prep Cartridge Kit for RNA 2.0 (M1) manual extraction system for rapid, specific, and sensitive detection of SARS-COV-2 in cell culture, human, and animal clinical samples. The Biomeme SARS-CoV-2 assay, which simultaneously detects two viral targets, the orf1ab and S genes, and the Precision Biomonitoring TripleLock SARS-CoV-2 assay that targets the 5′ untranslated region (5′ UTR) and the envelope (E) gene of SARS-CoV-2 were highly sensitive and detected as low as 15 SARS-CoV-2 genome copies per reaction. In addition, the two assays were specific and showed no cross-reactivity with Middle Eastern respiratory syndrome coronavirus (MERS-CoV), infectious bronchitis virus (IBV), porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis (TGE) virus, and other common human respiratory viruses and bacterial pathogens. Also, both assays were highly reproducible across different operators and instruments. When used to test animal samples, both assays equally detected SARS-CoV-2 genetic materials in the swabs from SARS-CoV-2-infected hamsters. The M1 lysis buffer completely inactivated SARS-CoV-2 within 10 min at room temperature enabling safe handling of clinical samples. Collectively, these results show that the Biomeme and Precision Biomonitoring TripleLock SARS-CoV-2 mobile testing platforms could reliably and promptly detect SARS-CoV-2 in both human and animal clinical samples in approximately an hour and can be used in remote areas or health care settings not traditionally serviced by a microbiology laboratory.


2019 ◽  
Vol 215 ◽  
pp. 12001
Author(s):  
Hatice Altug

Nanophotonics excels at confining light into nanoscale optical mode volumes and generating dramatically enhanced light matter interactions. These unique aspects have been unveiling a plethora of fundamentally new optical phenomena, yet a critical issue ahead for nanophotonics is the development of novel devices and applications that can take advantage of these nano-scale effects. It is expected that nanophotonics will lead to disruptive technologies in energy harvesting, quantum and integrated photonics, optical computing and including biosensing. To this end, our research is focused on the application of nanophotonics to introduce powerful biosensors that can have impact on a wide range of areas including basic research in life sciences, early disease diagnostics, safety and point-of-care testing. In particular, we exploit nanophotonics and its integration with microfluidics to address key challenges of current biosensors and develop devices that can enable label-free, ultra-sensitive, multiplexed, rapid and real-time measurements on biomolecules, pathogens and living systems. In this talk I will present some of our recent work on nanophotonic meta surfaces for biosensing and bioimaging as well as their applications in real-world settings.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2951 ◽  
Author(s):  
Daniel Carreres-Prieto ◽  
Juan T. García ◽  
Fernando Cerdán-Cartagena ◽  
Juan Suardiaz-Muro

Local administrations demand real-time and continuous pollution monitoring in sewer networks. Spectroscopy is a non-destructive technique that can be used to continuously monitor quality in sewers. Covering a wide range of wavelengths can be useful for improving pollution characterization in wastewater. Cost-effective and in-sewer spectrophotometers would contribute to accomplishing discharge requirements. Nevertheless, most available spectrometers are based on incandescent lamps, which makes it unfeasible to place them in a sewerage network for real-time monitoring. This research work shows an innovative calibration procedure that allows (Light-Emitting Diode) LED technology to be used as a replacement for traditional incandescent lamps in the development of spectrophotometry equipment. This involves firstly obtaining transmittance values similar to those provided by incandescent lamps, without using any optical components. Secondly, this calibration process enables an increase in the range of wavelengths available (working range) through a better use of the LED’s spectral width, resulting in a significant reduction in the number of LEDs required. Thirdly, this method allows important reductions in costs, dimensions and consumptions to be achieved, making its implementation in a wide variety of environments possible.


2020 ◽  
Author(s):  
Lavinia Tunini ◽  
David Zuliani ◽  
Paolo Fabris ◽  
Marco Severin

<p>The Global Navigation Satellite Systems (GNSS) provide a globally extended dataset of primordial importance for a wide range of applications, such as crustal deformation, topographic measurements, or near surface processes studies. However, the high costs of GNSS receivers and the supporting software can represent a strong limitation for the applicability to landslide monitoring. Low-cost tools and techniques are strongly required to face the plausible risk of losing the equipment during a landslide event.</p><p>Centro di Ricerche Sismologiche (CRS) of Istituto Nazionale di Oceanografia e di Geofisica Sperimentale OGS in collaboration with SoluTOP, in the last years, has developed a cost-effective GNSS device, called LZER0, both for post-processing and real-time applications. The aim is to satisfy the needs of both scientific and professional communities which require low-cost equipment to increase and improve the measurements on structures at risk, such as landslides or buildings, without losing precision.</p><p>The landslide monitoring system implements single-frequency GNSS devices and open source software packages for GNSS positioning, dialoguing through Linux shell scripts. Furthermore a front-end web page has been developed to show real-time tracks. The system allows measuring real-time surface displacements with a centimetre precision and with a cost ten times minor than a standard RTK GPS operational system.</p><p>This monitoring system has been tested and now applied to two landslides in NE- Italy: one near Tolmezzo municipality and one near Brugnera village. Part of the device development has been included inside the project CLARA 'CLoud plAtform and smart underground imaging for natural Risk Assessment' funded by the Italian Ministry of Education, University and Research (MIUR).</p>


2019 ◽  
Author(s):  
Lee E. Korshoj ◽  
Prashant Nagpal

AbstractAdvances in precision medicine require high-throughput, inexpensive, point-of-care diagnostic methods with multi-omics capability for detecting a wide range of biomolecules and their molecular variants. Optical techniques have offered many promising advances towards such diagnostics. However, the inability to squeeze light with several hundred-nanometer wavelengths into angstrom-scale volume for single nucleotide measurements has hindered further progress. Recently, a block optical sequencing (BOS) method has been shown for determining relative nucleobase content in DNA k-mer blocks with Raman spectroscopy, and a block optical content scoring (BOCS) algorithm was developed for robust content-based genetic biomarker database searching. Here, we performed BOS measurements on positively-charged silver nanoparticles to achieve 93.3% accuracy for predicting nucleobase content in DNA k-mer blocks (where k=10), as well as measurements on RNA and chemically-modified nucleobases for extensions to transcriptomic and epigenetic studies. Our high-accuracy BOS measurements were then used with BOCS to correctly identify a β-lactamase gene from the MEGARes antibiotic resistance database and confirm the Pseudomonas aeruginosa pathogen of origin from <12 content measurements (<15% coverage) of the gene. These results prove the integration of BOS/BOCS as a diagnostic optical sequencing platform. With the versatile range of available plasmonic substrates offering simple data acquisition, varying resolution (single-molecule to ensemble), and multiplexing, this optical sequencing platform has potential as the rapid, cost-effective method needed for broad-spectrum biomarker detection.


2016 ◽  
Author(s):  
Steve Kujawa ◽  
Anand Sethuraman ◽  
Kevin Eng ◽  
Primo Baybayan ◽  
Lien Heyrman ◽  
...  

Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 607 ◽  
Author(s):  
Vania Silverio ◽  
Miguel Amaral ◽  
João Gaspar ◽  
Susana Cardoso ◽  
Paulo P. Freitas

Integration of point-of-care assays can be facilitated with the use of actuated magnetic beads (MB) to perform testing in less expensive settings to enable the delivery of cost-effective care. In this paper we present six different designs of planar microelectromagnets traps (MEMT) with four external coils in series and one central coil connected for an opposite direction of manipulation of MB in microfluidic flows. The development of a simulation tool facilitated the rapid and efficient optimization of designs by presenting the influence of system variables on real time concentrations of MB. Real time experiments are in good agreement with the simulations and showed that the design enabled synchronous concentration and dispersion of MB on the same MEMT. The yield of local concentration is seen to be highly dependent on coil design. Additional coil turns between the central and external coils (inter-windings) doubled magnetic concentration and repulsion with no significant electrical resistance increase. The assemblage of a copper microchannel closed loop cooling system to the coils successfully eliminated the thermal drift promoted by joule heating generated by applied current.


2014 ◽  
Vol 11 (1) ◽  
Author(s):  
Alcione de Oliveira dos Santos ◽  
Luan Felipo Botelho Souza ◽  
Lourdes Maria Borzacov ◽  
Juan Miguel Villalobos-Salcedo ◽  
Deusilene Souza Vieira

Sign in / Sign up

Export Citation Format

Share Document